Considering conservation of momentum;
m1v1 + m2v2 = m3v3
In which,
m1 = mass of snowball 1 = 0.4 kg
v1 = velocity of snowball 1 = 15 m/s
m2 = mass of snowball 2 = 0.6 kg
v2 = velocity of snow ball 2 = 15 m/s
m3 = combined mass = 1 kg
v3 = velocity after comination
Therefore;
0.4*15 + 0.6*15 = 1*v3
v3 = 6+9 = 15 m/s
KE = 1/2mv^2
Then,
KE1 = 1/2*0.4*15^2 = 45 J
KE2 = 1/2*0.6*15^2 = 67.5 J
KE3 = 1/2*1*15^2 = 112.5 J
Therefore, KE3 (kinetic energy after collision) = K1+K2 {kinetic energy before collision). And thus it is 100%.
A, b and d
Competition for fix resources of course increases the
energy expenditure needed to gather those resources and leaves less for a
given population. A lower amount of sunlight or water also contributes
to decreased energy which lowers growth. Finally, small borders limit
growth in that population density can only go so high before the death
rate increases beyond the birth rate.
Answer:
it increases-
Explanation:
When the mass of a rocket decreases as it burns through its fuel and the force ( thrust) is constant then by newtons second law of motion
F= ma here F is constant this means that ma= constant
⇒ m= F /a this implies that mass is inversely proportional to acceleration.
its means when the mass decreases the acceleration must increase. hence the acceleration increases