Answer:
It's due to the distance from either ends of strings origin...
Explanation:
As we know that waves behave moving in a flow from one side to another side and this gives a prospective of motion. Suppose a wave is pinched from the near one end of a guitar then due to the distortion created by the point of tie of strings the wave super imposes and moves with a velocity v and produces a wave frequency f. as we the pinching go down to the center the wave stabilizes itself to a stationary origin right at the center and the frequency then changes accordingly as moving down on the string.
*☆*――*☆*――*☆*――*☆*――*☆*――*☆*――*☆*――*☆**☆*――*☆*――*☆*――*☆
Answer: Something that's vibrating, and you also need medium for those vibrations to start in.
I hope this helped!
<!> Brainliest is appreciated! <!>
- Zack Slocum
*☆*――*☆*――*☆*――*☆*――*☆*――*☆*――*☆*――*☆**☆*――*☆*――*☆*――*☆
<span>C.
Sample C would be best, because the percentage of the energy
in an
incident wave that remains in a reflected wave from this material
is the
smallest.
The coefficient of absorption is the percentage of incident sound
that's absorbed. So the highest coefficient of absorption results in
the smallest </span><span>percentage of the energy in an
incident wave that remains.
That's what you want. </span>
Answer:
9.6 Ns
Explanation:
Note: From newton's second law of motion,
Impulse = change in momentum
I = m(v-u).................. Equation 1
Where I = impulse, m = mass of the ball, v = final velocity, u = initial velocity.
Given: m = 2.4 kg, v = 2.5 m/s, u = -1.5 m/s (rebounds)
Substitute into equation 1
I = 2.4[2.5-(-1.5)]
I = 2.4(2.5+1.5)
I = 2.4(4)
I = 9.6 Ns
Answer:
D
Explanation:
Work is not a vector but it is a scalar