Answer:
Ver la explicacion abajo.
Explanation:
La física es una ciencia exacta que explica las propiedades de la materia y de la energía, por medio de leyes y ecuaciones explica los fenómenos naturales que suceden a nivel microscópico y macroscópico. La física se puede dividir en estudios de la mecánica clásica y de la mecánica cuántica.
<u />
<u>Mecanica clasica</u>
<u />
Se ocupa de los fenomenos fisicos que suceden a nivel macroscopico, donde se pueden aplicar las leyes de Newton para explicar los diferentes fenomenos que suceden a nivel universal. Esto sucede a velocidades mucho menores comparadas a la velocidad de la luz.
<u>Mecanica cuantica.</u>
<u />
Estudia sistemas de pequeña escala, como atomos y particulas elementales.
<u />
<u>Mecanica Relativista</u>
<u />
Describe comportamiento de cuerpos que se mueven con velocidades cercanas a la velocidad de la luz. A partir de ahi no se pueden utilizar las mismas ecuaciones de la mecanica clasica para describir los comportamientos fisicos de los cuerpos.
Answer:
Instantaneous speed is the exact speed that an object in motion has at a given instant in time.
Instantaneous velocity is the exact velocity that an object in motion has at a given instant in time.
Explanation:
Instantaneous velocity tells how fast an object is moving anywhere along its path.
Instantaneous speed at an instant is equal to the magnitude of the instantaneous velocity at that instant.
Answer:
The Spanish philosopher George Santayana wrote, “those who cannot remember the past are condemned to repeat it.” When it comes to climate change, repeating the past is a luxury we can’t afford. If partisan politics continues to derail policy or if denial continues to win over science, it will mean irreversible changes to our planet. Future generations will look at ours as the one that didn’t have the courage to act, rather than the one that recognized the fierce urgency of the moment and met it head on.
With this in mind, we’ve created a climate change timeline highlighting the evolution of science, the intrusion of denial, and the sluggishness of policy over the past 200 years. Let’s learn from the mistakes of the past, so we can make tomorrow a brighter—but not hotter—future.
From conservation of momentum, the ram force can be calculated similarly to rocket thrust:
F = d(mv)/dt = vdm/dt.
<span>In other words, the force needed to decelerate the wind equals the force that would be needed to produce it.
</span><span> v = 120/3.6 = 33.33 m/s
</span><span> dm/dt = v*area*density
</span> dm/dt = (33.33)*((45)*(75))*(1.3)
dm/dt = <span>
146235.375 </span><span>kg/s
</span><span> F = v^2*area*density
</span> F = (33.33)^2*((45)*(75))*(1.3) = <span>
<span>4874025 </span></span><span>N
</span> This differs by a factor of 2 from Bernoulli's equation, which relates velocity and pressure difference in reference not to a head-on collision of the fluid with a surface but to a fluid moving tangentially to the surface. Also, a typical mass-based drag equation, like Bernoulli's equation, has a coefficient of 1/2; however, it refers to a body moving through a fluid, where the fluid encountered by the body is not stopped relative to the body (i.e., brought up to its speed) like is the case in this problem.
speed=frequency*wavelength, so frequency=speed/wavelength. frequency=80*0.2
Frequency = 16 Hz