Answer:
0.2s
force = change in momentum/ time
time = change in momentum/time
Explanation:
first, let's find the change in momentum
pf-pi
5×(-2) - 5× 2
-20kgm/s = 20kgm/s(by changing the direction of whole system)
time = change in momentum/time
20/100
<u> 0.2s</u>
One should never anchor in a narrow channel, until unless required very importantly. One should stay to the starboard side, and use a prolonged blast. The announcement must be done to alarm the nearby vessels, about your approach. The vessel should be kept at the outer limit of the starboard side.
Answer:
joule
Explanation:
Let m = mass of the car and v1 = initial velocity and v2 = final velocity
Given.
Initial velocity = 100 km/h
final velocity = 50 km/h
What is work done in the car to slow it from 100km/h to 50km/h?


The work done in the car to slow it from v1 to v2.
w=Δk






joule.
Therefore, the work done is
joule
Answer:
Explanation:
When the positively charged half shell is brought in contact with the electroscope, its needle deflects due to charge present on the shell.
When the negatively charged half shell is brought in contact with the positively charged shell , the positive and negative charge present on each shell neutralises each other .So both the shells lose their charges .The positive half shell also loses all its charges
When we separate the half shells , there will be no deflection in the electroscope because both the shell have already lost their charges and they have become neutral bodies . So they will not be able to produce any deflection in the electroscope.