Answer:
Part 1)
Boat A will win the race
Part 2)
Boat A will win the race by 48 km as the 2nd boat will reach the other end while boat A will just touches the finish line
Part 3)
average velocity must be zero
Explanation:
As we know that the distance moved by the boat is given as

now the time taken by the boat to move to and fro is given as



Time taken by Boat B to cover the distance


Part 1)
Boat A will win the race
Part 2)
Boat A will win the race by 48 km as the 2nd boat will reach the other end while boat A will just touches the finish line
Part 3)
Since the displacement of Boat A is zero
so average velocity must be zero
The correct answer is A. the magnet to become stronger
The stronger the electric current in the piece of metal, the stronger the magnetic field will be.
Answer:
The x-component of the electric field at the origin = -11.74 N/C.
The y-component of the electric field at the origin = 97.41 N/C.
Explanation:
<u>Given:</u>
- Charge on first charged particle,

- Charge on the second charged particle,

- Position of the first charge =

- Position of the second charge =

The electric field at a point due to a charge
at a point
distance away is given by

where,
= Coulomb's constant, having value 
= position vector of the point where the electric field is to be found with respect to the position of the charge
.
= unit vector along
.
The electric field at the origin due to first charge is given by

is the position vector of the origin with respect to the position of the first charge.
Assuming,
are the units vectors along x and y axes respectively.

Using these values,

The electric field at the origin due to the second charge is given by

is the position vector of the origin with respect to the position of the second charge.

Using these values,

The net electric field at the origin due to both the charges is given by

Thus,
x-component of the electric field at the origin = -11.74 N/C.
y-component of the electric field at the origin = 97.41 N/C.
Answer:
option (d) 7.1 kN
Explanation:
Given:
Mass of the car, m = 1600 kg
Acceleration of the car, a = 1.5 m/s²
Coefficient of kinetic friction = 0.3
let the tension be 'T'
Now,
ma = T - f .................(1)
where f is the frictional force
also,
f = 0.3 × mg
where g is the acceleration due to the gravity
thus,
f = 0.3 × 1600 × 9.81 =
therefore,
equation 1 becomes
1600 × 1.5 = T - 4708.8
or
T = 2400 + 4708.8
or
T = 7108.8 N
or
T = 7.108 kN
Hence,
The correct answer is option (d) 7.1 kN