Answer:
Throat diameter
=28.60 mm
Explanation:
Bore diameter
⇒
Manometric deflection x=235 mm
Flow rate Q=240 Lt/min⇒ Q=.004
Coefficient of discharge
=0.8
We know that discharge through venturi meter


=13.6 for Hg and
=1 for water.

h=2.961 m
Now by putting the all value in



⇒
=28.60 mm
So throat diameter
=28.60 mm
Answer:
Plastic deformation, irreversible or permanent. Deformation mode in which the material does not return to its original shape after removing the applied load. This happens because, in plastic deformation, the material undergoes irreversible thermodynamic changes by acquiring greater elastic potential energy.
Elastic deformation, reversible or non-permanent. the body regains its original shape by removing the force that causes the deformation. In this type of deformation, the solid, by varying its tension state and increasing its internal energy in the form of elastic potential energy, only goes through reversible thermodynamic changes.
Answer:
avoiding cutting down tree carelessy
Explanation:
people cutting down tree due to high population in order to find land for building this house so government should encourage people to have less children in the families and train them that when they are cutting trees should plants 10 tree inorder to recovery tree that is take off.
Answer:
h = 375 KW/m^2K
Explanation:
Given:
Thermo-couple distances: L_1 = 10 mm , L_2 = 20 mm
steel thermal conductivity k = 15 W / mK
Thermo-couple temperature measurements: T_1 = 50 C , T_2 = 40 C
Air Temp T_∞ = 100 C
Assuming there are no other energy sources, energy balance equation is:
E_in = E_out
q"_cond = q"_conv
Since, its a case 1-D steady state conduction, the total heat transfer rate can be found from Fourier's Law for surfaces 1 and 2
q"_cond = k * (T_1 - T_2) / (L_2 - L_1) = 15 * (50 - 40) / (0.02 - 0.01)
=15KW/m^2
Assuming SS is solid, temperature at the surface exposed to air will be 60 C since its gradient is linear in the case of conduction, and there are two temperatures given in the problem. Convection coefficient can be found from Newton's Law of cooling:
q"_conv = h * ( T_∞ - T_s ) ----> h = q"_conv / ( T_∞ - T_s )
h = 15000 W / (100 - 60 ) C = 375 KW/m^2K