Data Given:
Initial Volume = V₁ = 36.7 L
Initial Pressure = P₁ = 145 kPa
Initial Temperature = T₁ = 65 °C + 273 = 338 K
Final Volume = V₂ = ?
Final Pressure = P₂ = 101.325 kPa (Standard Pressure)
Final Temperature = T₂ = 273 K (Standard Temperature)
Formula used:
As number of moles are constant, so Ideal Gas equation in following form is used,
P₁ V₁ / T₁ = P₂ V₂ / T₂
Solving for V₂,
V₂ = P₁ V₁ T₂ / T₁ P₂
Putting Values,
V₂ = (145 kPa × 36.7 L × 338 K) ÷ (273 K × 101.325 kPa)
V₂ = 1798667 ÷ 27661.25
V₂ = 65.02 L
Answer: 69.72 kg of cryolite will be produced.
Explanation:
The balanced chemical equation is:

To calculate the moles, we use the equation:

moles of
= 
moles of
= 
moles of
= 
As 1 mole of
reacts with 6 moles of 
166 moles of
reacts with =
moles of 
As 1 mole of
reacts with 12 moles of 
166 moles of
reacts with =
moles of 
Thus
is the limiting reagent.
As 1 mole of
produces = 2 moles of cryolite
166 moles of
reacts with =
moles of cryolite
Mass of cryolite
= 
Thus 69.72 kg of cryolite will be produced.
A particle which is smaller than an atom in size. Typically, an atom can be broken down into three subatomic particles, namely: protons, electrons, and neutrons.
Answer
The volume of the container that the gas is in = 874.30 L
Explanation
Given:
Moles, n = 3.2 mol
Pressure, P = 0.095 atm
Temperature, T = 43 °C = (43 + 273.15 K) = 316.15 K
Molar gas constant, R = 0.0821 atm•L/mol•K
What to find:
The volume of the container that the gas occupied.
Step-by-step solution:
The volume of the container that the gas occupied can be calculated using the ideal gas equation.

Therefore, the volume of the container that the gas occupied is 874.30 L