Answer:
248.756 mV
49.7265 µA
Explanation:
The Thevenin equivalent source at one terminal of the bridge is ...
voltage: (100 V)(1000/(1000 +1000) = 50 V
impedance: 1000 || 1000 = (1000)(1000)/(1000 +1000) = 500 Ω
The Thevenin equivalent source at the other terminal of the bridge is ...
voltage = (100 V)(1010/(1000 +1010) = 100(101/201) ≈ 50 50/201 V
impedance: 1000 || 1010 = (1000)(1010)/(1000 +1010) = 502 98/201 Ω
__
The open-circuit voltage is the difference between these terminal voltages:
(50 50/201) -(50) = 50/201 V ≈ 0.248756 V . . . . open-circuit voltage
__
The current that would flow is given by the open-circuit voltage divided by the sum of the source resistance and the load resistance:
(50/201 V)/(500 +502 98/201 +4000) = 1/20110 A ≈ 49.7265 µA
Answer:
a) 2622.903 N/m^3
b) 1.38233
c)4.878811765
Explanation:
Find the void ratio using the formula:

Here;
is specific gravity of soil solids
is unit weight of water = 998 kg/m^3
is the moisture content = 0.17
is the void ratio
is the unit weight of soil = 14.9KN/m^3
Saturation Ratio Formula:

S is saturation rate
Substitute Eq 2 into Eq 1


Specific gravity of soil solids

Saturated Unit Weight

Answer:
elongation of the brass rod is 0.01956 mm
Explanation:
given data
length = 5 cm = 50 mm
diameter = 4.50 mm
Young's modulus = 98.0 GPa
load = 610 N
to find out
what will be the elongation of the brass rod in mm
solution
we know here change in length formula that is express as
δ =
................1
here δ is change in length and P is applied load and A id cross section area and E is Young's modulus and L is length
so all value in equation 1
δ =
δ =
δ = 0.01956 mm
so elongation of the brass rod is 0.01956 mm
convert 40db to standard gain
AL=10^40/20=100
calculate total voltage gain
=AL×RL/RL+Ri
=83.33
38.41 DB
calculate power
Pi=Vi^2/Ri Po=Vo^2/RL
power gain= Po/Pi
=13.90×10^6