Answer:
hello some parts of your question is missing attached below is the missing part ( the required fig and table )
answer : The solar collector surface area = 7133 m^2
Explanation:
Given data :
Rate of energy input to the collectors from solar radiation = 0.3 kW/m^2
percentage of solar power absorbed by refrigerant = 60%
Determine the solar collector surface area
The solar collector surface area = 7133 m^2
attached below is a detailed solution of the problem
Answer:
see explaination
Explanation:
Balanced equation or stoichiometry equation means in a product after reaction there is no unburned carbon compound left or we can say the oxygen is sufficient to combine with all the carbon and hydrogen moleculs to form Carbon-dioxide and water respectively.
The dew point temperature of balanced equation will be 100°c because water vapour bis present in it and it will condense at 100°c at 1 bar pressure while the other products need much lower temperatures to liquify.
See attachment.
Answer:
A Bipolar Junction Transistor, or BJT, is a solid-state device in which the current flow between two terminals (the collector and the emitter) is controlled by the amount of current that flows through a third terminal (the base).
The main basic function of a BJT is to amplify current it will allow BJTs are used as amplifiers or switches to produce wide applicability in electronic equipment include mobile phones, industrial control, television, and radio transmitters. There are two different types of BJTs are available, they are NPN and PNP.
Answer:
i would say C but i may be wrong have a great day
Explanation:
Answer: a 8143.71 kJ/kg
b 393.15 K
Explanation:
This system is an isobaric process in which there is no change in pressure a quasistatic process where a pressure distribution exists
a since no change in pressure =0 the system does work thus
FOR HELIUM properties in standard thermodynamic chart
cv = 3.1 kJ/kgK
M = Molar mass = 4 kg/kmol
R = Universal gas constant = 8.314 kJ/kg K
cp ≈ cv +R /M = 3.1 + 8.314 /4 = 5.1785 kJ/kgK
Cp = cp * M = 5.1785 kJ/kgK * 4 kg/kmol = 20.714 kJ/kgkmol
T = 120 °C to Kelvin = 120 + 273.15k = 393.15 K
W =n Cp ΔT = 1 kmol * 20.714 kJ/kg kmol* 393.15 K = 8143.71 kJ/kg
b convert T °C = T K thus 120 + 273.15 K = 393.15 K
P₁/T₁ = P₂/T₂
200 kPa/ 393.15 K = 200 kPa/T₂
T₂ = 200 kPa * 393.15 K/ 200 kPa = 393.15 K or 120 k