Answer:
1
Explanation:
because every time you dived a number by its own number it is 1
Answer:
ω=314.15 rad/s.
0.02 s.
Explanation:
Given that
Motor speed ,N= 3000 revolutions per minute
N= 3000 RPM
The speed of the motor in rad/s given as

Now by putting the values in the above equation

ω=314.15 rad/s
Therefore the speed in rad/s will be 314.15 rad/s.
The speed in rev/sec given as

ω= 50 rev/s
It take 1 sec to cover 50 revolutions
That is why to cover 1 revolution it take

The French and Dutch colonized arenas so small compared to the Spanish colonized areas For farming
Answer:
The range of a set of data is the difference between the highest and lowest values in the set. To find the range, first order the data from least to greatest. Then subtract the smallest value from the largest value in the set.
Explanation:
Answer:The move from hubs (shared networks) to switched networks was a big improvement. Control over collisions, increased throughput, and the additional features offered by switches all provide ample incentive to upgrade infrastructure. But Layer 2 switched topologies are not without their difficulties. Extensive flat topologies can create congested broadcast domains and can involve compromises with security, redundancy, and load balancing. These issues can be mitigated through the use of virtual local area networks, or VLANs. This chapter provides the structure and operation of VLANs as standardized in IEEE 802.1Q. This discussion will include trunking methods used for interconnecting devices on VLANs.
Problem: Big Broadcast Domains
With any single shared media LAN segment, transmissions propagate through the entire segment. As traffic activity increases, more collisions occur and transmitting nodes must back off and wait before attempting the transmission again. While the collision is cleared, other nodes must also wait, further increasing congestion on the LAN segment.
The left side of Figure 4-1 depicts a small network in which PC 2 and PC 4 attempt transmissions at the same time. The frames propagate away from the computers, eventually colliding with each other somewhere in between the two nodes as shown on the right. The increased voltage and power then propagate away from the scene of the collision. Note that the collision does not continue past the switches on either end. These are the boundaries of the collision domain. This is one of the primary reasons for switches replacing hubs. Hubs (and access points) simply do not scale well as network traffic increases.