1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nordsb [41]
3 years ago
13

700.0 liters of a gas are prepared at 760.0 mmHg and 100.0 °C. The gas is placed into a tank under high pressure. When the tank

cools to 32.0 °C, the pressure of the gas is 20.0 atm. What is the volume of the gas?
Engineering
1 answer:
ololo11 [35]3 years ago
5 0

Answer:

The volume of the gas is 11.2 L.

Explanation:

Initially, we have:

V₁ = 700.0 L

P₁ = 760.0 mmHg = 1 atm

T₁ = 100.0 °C

When the gas is in the thank we have:

V₂ =?

P₂ = 20.0 atm

T₂ = 32.0 °C      

Now, we can find the volume of the gas in the thank by using the Ideal Gas Law:

PV = nRT

V_{2} = \frac{nRT_{2}}{P_{2}}    (1)

Where R is the gas constant

With the initials conditions we can find the number of moles:

n = \frac{P_{1}V_{1}}{RT_{1}}    (2)

By entering equation (2) into (1) we have:

V_{2} = \frac{P_{1}V_{1}}{RT_{1}}*\frac{RT_{2}}{P_{2}} = \frac{1 atm*700.0 L*32.0 ^{\circ}}{100.0 ^{\circ}*20.0 atm} = 11.2 L

Therefore, When the gas is placed into a tank the volume of the gas is 11.2 L.

I hope it helps you!                                                                                                                                                                                

You might be interested in
A triangular roadside channel is poorly lined with riprap. The channel has side slopes of 2:1 (H:V) and longitudinal slope of 2.
Oliga [24]

Answer:

Q = 14.578 m³/s

Explanation:

Given

We use the Manning Equation as follows

Q = (1/n)*A*(∛R²)*(√S)

where

  • Q = volumetric water flow rate passing through the stretch of channel (m³/s for S.I.)
  • A = cross-sectional area of flow perpendicular to the flow direction, (m² for S.I.)
  • S = bottom slope of channel, m/m (dimensionless) = 2.5% = 0.025
  • n = Manning roughness coefficient (empirical constant), dimensionless = 0.023
  • R = hydraulic radius = A/P (m for S.I.) where :
  • A = cross-sectional area of flow as defined above,
  • P = wetted perimeter of cross-sectional flow area (m for S.I.)

we get A as follows

A = (B*h)/2

where

B = 5 m (the top width of the flowing channel)

h = (B/2)*(m) = (5 m/2)*(1/2) = 1.25 m   (the deep)

A = (5 m*1.25 m/2) = 3.125 m²

then we find P

P = 2*√((B/2)²+h²)   ⇒  P = 2*√((2.5 m)²+(1.25 m)²) = 5.59 m

⇒ R = A/P ⇒ R = 3.125 m²/5.59 m = 0.559 m

Substituting values into the Manning equation gives:

Q = (1/0.023)*(3.125 m²)*(∛(0.559 m)²)*(√0.025)

⇒ Q = 14.578 m³/s

8 0
3 years ago
Mention verious medium level and higher level human resources related to engineering​
aliya0001 [1]

Answer:

Engineering aims to allow technical parts, structures and/or systems, such as those of a machine, to fulfill their function. To this end, occurring and/or desired processes (the operation thereof) are investigated and elaborated. Appropriate parts are designed individually or in a team, occurring stresses are calculated and the parts to be produced are modeled and/or specified on technical drawings. In some fields, maintenance is a standard part of the work to be performed. For a large part of engineering, standards and agreements have been drawn up with a view to the desired safety and practical applicability.

8 0
2 years ago
List everything wrong with 2020
natita [175]
Everything wrong with 2020 is WW3 that dump trump decided to start , Australia fires , Kobe passed away than Pop smoke :( corona virus got really big , quarantine started , riots & protesting started because of that dumb who’re racist cop ! Hope this helps
6 0
3 years ago
Read 2 more answers
Five kg of water is contained in a piston-cylinder assembly, initially at 5 bar and 240°C. The water is slowly heated at constan
Digiron [165]

Answer:

The final temperature of water is 381.39  °C.

Explanation:

Given that

Mass of water = 5 kg

Heat transfer at constant pressure Q = 2960 KJ

Initial temperature = 240 °C

We know that heat transfer at constant pressure given as follows

Q=mC_p\Delta T

We know that for water

C_p=4.187\ \frac{KJ}{kg.K}

Lets take final temperature of water is T

So

Q=mC_p\Delta T

2960=5\times 4.187(T-240)

T=381.39  °C

So the final temperature of water is 381.39  °C.

7 0
3 years ago
Why or why not the following materials will make good candidates for the construction of
zvonat [6]

Answer:

Answer explained below

Explanation:

3.] a] A turbine blade is the individual component which makes up the turbine section of a gas turbine. The blades are responsible for extracting energy from the high temperature, high pressure gas produced by the combustor.

The turbine blades are often the limiting component of gas turbines. To survive in this difficult environment, turbine blades often use exotic materials like superalloys and many different methods of cooling, such as internal air channels, boundary layer cooling, and thermal barrier coatings. The blade fatigue failure is one of the major source of outages in any steam turbines and gas turbines which is due to high dynamic stresses caused by blade vibration and resonance within the operating range of machinery.

To protect blades from these high dynamic stresses, friction dampers are used.

b] Thermal barrier coatings (TBC) are highly advanced materials systems usually applied to metallic surfaces, such as on gas turbine or aero-engine parts, operating at elevated temperatures, as a form ofexhaust heat management.

These 100μm to 2mm coatings serve to insulate components from large and prolonged heat loads by utilizing thermally insulating materials which can sustain an appreciable temperature difference between the load-bearing alloys and the coating surface.

In doing so, these coatings can allow for higher operating temperatures while limiting the thermal exposure of structural components, extending part life by reducing oxidation and thermal fatigue.

In conjunction with active film cooling, TBCs permit working fluid temperatures higher than the melting point of the metal airfoil in some turbine applications.

Due to increasing demand for higher engine operation (efficiency increases at higher temperatures), better durability/lifetime, and thinner coatings to reduce parasitic weight for rotating/moving components, there is great motivation to develop new and advanced TBCs.

3 0
3 years ago
Other questions:
  • Please read
    6·1 answer
  • A vehicle experiences hard shifting. Technician A says that the bell housing may be misaligned. Technician B says that incorrect
    5·1 answer
  • Which of the following do pumps provide to a fluid power system?
    8·1 answer
  • What is the advantage of Sensabot over human inspectors?
    12·1 answer
  • Which element refers to musically depicting the emotion in the words of a musical piece?
    14·1 answer
  • Método de Programación lineal utilizado para resolver problemas en teoría de redes?
    15·1 answer
  • Prelest! Introduction to Engineering and Technology 1 Select the correct answer. What technological invention allowed for the pr
    5·1 answer
  • Suppose to build RSA crypto system you picked primes "p" and "q" as 3 and 7 and "e" as 5 what are the public and private keys? W
    11·1 answer
  • The velocity components expressed in m/s<br>​
    6·1 answer
  • Ferroconcrete is reinforced concrete that combines concrete and ________. A. Lead c. Copper b. Iron d. Aluminum.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!