Answer:

Explanation:
Hello,
In this case, the described chemical reaction is:

Thus, for the given reacting masses, we must identify the limiting reactant for us to determine the maximum mass of water that could be produced, therefore, we proceed to compute the available moles of ethane:

Next, we compute the moles of ethane consumed by 13.0 grams of oxygen by using the 1:7/2 molar ratio between them:

Thus, we notice there are less available moles of ethane, for that reason, it is the limiting reactant, thereby, the maximum amount of water is computed by considering the 1:3 molar ratio between ethane and water:

Best regards.
Answer:
1.12g/mol
Explanation:
The freezing point depression of a solvent for the addition of a solute follows the equation:
ΔT = Kf*m*i
<em>Where ΔT is change in temperature (Benzonitrile freezing point: -12.82°C; Freezing point solution: 13.4°C)</em>
<em>ΔT = 13.4°C - (-12.82) = 26.22°C</em>
<em>m is molality of the solution</em>
<em>Kf is freezing point depression constant of benzonitrile (5.35°Ckgmol⁻¹)</em>
<em>And i is Van't Hoff factor (1 for all solutes in benzonitrile)</em>
Replacing:
26.22°C = 5.35°Ckgmol⁻¹*m*1
4.90mol/kg = molality of the compound X
As the mass of the solvent is 100g = 0.100kg:
4.9mol/kg * 0.100kg = 0.490moles
There are 0.490 moles of X in 551mg = 0.551g, the molar mass (Ratio of grams and moles) is:
0.551g / 0.490mol
= 1.12g/mol
<em>This result has no sense but is the result by using the freezing point of the solution = 13.4°C. Has more sense a value of -13.4°C.</em>
The answer is (2) KNO3. This depends on the solubility of these four compounds at 10℃. For NaCl, it is 35.8 g, For NaNO3, 80.8 g. KCl, 31.2 g. KNO3, 21.9g. So only KNO3 is less than 25.0 g.
Answer:
22.82M
Explanation:
342.3g/mol is présent in 1000
what about in 15??
( 342.3g/mol × 1000 ) ÷ 15
B
mass of solute - 4.0 g
mass of solution - 100g + 4.0g = 104g
4/104 = 0.03846
0.03846 • 100 = 3.8%