Answer:
The concentration of O2 will begin decreasing and The concentrations of CO2 and O2 will be equal.
Explanation:
Equilibrium occurs when the velocity of the formation of the products it's equal to the velocity of the formation of the reactants, thus the concentrations of the compounds remain constant.
Analyzing the information and the reaction given, we can notice that in equilibrium the rate (velocity) of formation of O2 (product) is equal to the rate of formation of CO2 (reactant).
As the CO2 and H2O are placed in the reaction, the Le Chateliêr's principle states that the equilibrium must shift to reestablish the equilibrium, thus, they must be consumed, and the concentration of O2 must increase.
As state above, in equilibrium, the concentrations didn't change, thus, the concentrations of CO2 and O2 will not change.
The concentrations of CO2 and O2 depends on the rate of the reaction and the initial quantities presented, so it's not possible to affirm they'll be equal.
I will help you with answering this question.
Answer:
Step-by-step explanation:
Alright, lets get started.
Suppose they take t minutes to meet each other.
Distance covered by first friend in t minutes, = 0.2 *t=0.2∗t
Distance covered by second friend in t minutes , =0.15 *t=0.15∗t
Total distance is given as 7, so
0.2 t + 0.15 t = 70.2t+0.15t=7
0.35 t = 70.35t=7
t = 20t=20
means after 20minutes they will meet.
SO. the average speed is 10m: Answer
Answer:
the equator is closer to the sun
Answer:
C. The potential energy change for a chemical reaction.
Explanation:
The reaction coordinate q illustrates, graphically, the energy changes during exothermic and endothermic reactions. This graphical representation of the energy changes in the course of a chemical reaction is known as reaction coordinates. A reaction coordinate is a graphical sequence of steps by which the reaction progresses from reactants through activated complexes to products. Reaction coordinates explain how far a reaction has proceeded towards the products or from the reactants.
From the images attached below, we can see the reaction coordinates in the reaction profiles.