1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
UNO [17]
3 years ago
7

50

Physics
2 answers:
kaheart [24]3 years ago
8 0

Answer: el pepe

Explanation:

sergiy2304 [10]3 years ago
5 0

Answer:

8125 N.

Explanation:

F = M A

M is mass

A is acceleration

F = 65 X 25

F = 8125 N.

You might be interested in
Water is boiled at sea level in a coffeemaker equipped with an immersion-type electric heating element. The coffee maker contain
Luden [163]

Answer:

P=1362\ W

t'=251.659\ s is time required to heat to boiling point form initial temperature.

Explanation:

Given:

initial temperature of water, T_i=18^{\circ}C

time taken to vapourize half a liter of water, t=18\ min=1080\ s

desity of water, \rho=1\ kg.L^{-1}

So, the givne mass of water, m=1\ kg

enthalpy of vaporization of water, h_{fg}=2256.4\times 10^{-3}\ J.kg^{-1}

specific heat of water, c=4180\ J.kg^{-1}.K^{-1}

Amount of heat required to raise the temperature of given water mass to 100°C:

Q_s=m.c.\Delta T

Q_s=1\times 4180\times (100-18)

Q_s=342760\ J

Now the amount of heat required to vaporize 0.5 kg of water:

Q_v=m'\times h_{fg}

where:

m'=0.5\ kg= mass of water vaporized due to boiling

Q_v=0.5\times 2256.4

Q_v=1.1282\times 10^{6}\ J

Now the power rating of the boiler:

P=\frac{Q_s+Q_v}{t}

P=\frac{342760+1128200}{1080}

P=1362\ W

Now the time required to heat to boiling point form initial temperature:

t'=\frac{Q_s}{P}

t'=\frac{342760}{1362}

t'=251.659\ s

6 0
4 years ago
A pot on the stove contains 200 g of water at 20°C. An unknown mass of ice that is originally at −10°C is placed in an identical
Mumz [18]

Answer:

a) The mass of the ice is smaller than the mass of the water

b) The ice reaches first 80°C ,

Explanation:

Since the heat Q that should be provided to ice

Q = sensible heat to equilibrium temperature (as ice) + latent heat + sensible heat until final temperature ( as water)

m ice * c ice * ( T equil -T initial  ) + m ice* L + m ice* c water * ( T final - T equil)

and the heat Q that should be provided to water is

Q= m water * c water * ( T final - T equil )

since the rate of heat addition q = constant and the time t taken to reach the final temperature is the same , then the heat absorbed Q=q*t is the same for both, therefore

m water * c water *  ( T final - T equil ) = m ice* [c ice *( T equil -T initial  ) + L + c water * ( T final - T equil)]

m water/ m ice =  [c ice * ( T equil -T initial  )  + L + c water * ( T final - T equil)]/ [ c water * ( T final - T equil)]

m water/ m ice = [c ice * ( T equil -T initial  )  + L ]/[c water * ( T final - T equil) ] + 1

since  [c ice * ( T equil -T initial  )  + L ]/[c water * ( T final - T equil) ] >0 , then

m water/ m ice > 1

m water > m ice

so the mass of ice is smaller that the mass of water

b) Since the heat Q that should be provided to the ice, starting from 55°C mass would be

Q ice= m ice * c water * ( T final2 - T final1 )

and for the water mass

Q water = m water * c water * ( T final2 - T final1 )

dividing both equations

Q water / Q ice = m water / m ice >1

thus

Q water > Q ice

since the heat addition rate is constant

Q water = q* t water and Q ice=q* t ice

therefore

q* t water > q* t ice

t water >  t ice

so the time that takes to reach 80°C is higher for water , thus the ice mass reaches it first.

5 0
4 years ago
Which term describes this diagram
STALIN [3.7K]

Answer:

the answer is letter; C

Explanation:

4 0
3 years ago
Read 2 more answers
Why is the Mid-Atlantic Ridge an ideal place for SWARM to collect electrical conductivity data?
ElenaW [278]

Answer: Mid-ocean ridges are geologically important because they occur along the kind of plate boundary where new ocean floor is created as the plates spread apart. Thus the mid-ocean ridge is also known as a "spreading center" or a "divergent plate boundary." The plates spread apart at rates of 1 cm to 20 cm per year.

3 0
3 years ago
Read 2 more answers
Two particles with charges are initially very far apart (effectively an infinite distance apart). They are then fixed at positio
ddd [48]

Answer:

potential energy increases.

Explanation:

The potential energy between the two charged particles is given by

U = k Q q / r

If they are very far apart then r tends to infinity and the potential energy is zero.

If they come closer then the potential energy between the two charged particles increases.

Thus, the potential energy increases.

3 0
4 years ago
Other questions:
  • A professional boxer hits his opponent with a 1025 N horizontal blow that lasts 0.150 s. The opponent's total body mass is 116 k
    7·1 answer
  • Technician A says that the pushrods should be rotating while the engine is running if the camshaft and lifters are okay. Technic
    13·1 answer
  • A physics instructor wants to project a spectrum of visible-light colors from 400 nm to 700 nm as part of a classroom demonstrat
    12·1 answer
  • Winston stands on the edge of a building's flat roof, 12 m above the ground, and throws a 147.0-g baseball straight down. the ba
    6·1 answer
  • Tyler throws a baseball, which accidentally breaks a window in his neighbor's house. Which of the following represents the actio
    12·2 answers
  • The more domains that are aligned in a magnet ___________.
    14·1 answer
  • What is surface tension and what phase of matter creates it?
    15·1 answer
  • 13. The percent of Earth's surface covered by high clouds
    12·2 answers
  • Mark the correct statement: a) Charges flow through a circuit b) voltage is applied across the circuit c) voltage is the ratio o
    11·1 answer
  • A 1200 kg car is travelling qt 20m\s determine the work that must be done on the car by the frictional force of the brakes to st
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!