Answer:
640 N
Explanation:
Given :
Mass of horse, m = 40kg
initial speed of horse, u = 8 m/s
final speed of horse, v = 0 m/s (because horse comes to a sudden stop)
time taken to stop, t = 0.5 s
recall that acceleration = change in speed / time taken for the change
or
a = (v - u) / t (substituting the above values)
a = (0 - 8) / 0.5
a = -16 m/s² (i.e it is a deceleration of 16 m/s²)
since we are not concerned about the direction of the force, we can simply use the absolute value of acceleration which is a = 16 m/s²
also recall that
Force = mass x acceleration
F = ma (substituting the values above)
F = 40kg x 16 m/s
F = 640 N
The answer is <span>A. Speed=100 million m/s and frequency = 50 million Hz.</span>
Let's calculate for each choice the wavelength using the equation:
v = f × λ ⇒ λ = v ÷ f<span>
where:
v - the speed,
f - the frequency,
</span>λ - the wavelength.
A:
v = 100 000 000 m/s
f = 50 000 000 Hz = 50 000 000 1/s (Since f = 1/T, so units are Hz = 1/s)
⇒ λ = 100 000 000 ÷ 50 000 000 = 2 m
B:
v = 150 000 000 m/s
f = 1 500 Hz = 1 500 1/s
⇒ λ = 150 000 000 m/s ÷ 1 500 = 100 000 m
B:
v = 300 000 000 m/s
f = 100 Hz = 100 1/s
⇒ λ = 300 000 000 m/s ÷ 100 = 3 000 000 m
According to these calculations, the shortest wavelength is needed for choice A.
Answer: It leads to a front. A front is.., I don't know how to explain it, so I'll add a picture. Fronts are made out of clouds and usually bring rain. So the answer is C: The formation of clouds and rain.
Explanation:
Answer:
a) puck is subjected to both the forces of the hockey sticks in a horizontal direction,
b)the puck does not move since the sum of the forces is zero
c) changing the magnitude or direction of its applied force
Explanation:
a) The puck is subjected to both the forces of the hockey sticks in a horizontal direction, these forces are of equal magnitude and opposite direction since the puck is at rest.
In the direction of the y-axis (perpendicular to the ice) you have the weight of the disk and the normal to this weight that are also in equilibrium.
b) the puck does not move since the sum of the forces is zero, which implies that the forces of the hockey sticks are of equal magnitude and opposite direction.
c) the player has several ways to make the puck move
* slightly changing the angle of the club and therefore the direction of the force, in this case the disc comes out in the direction of this component
* inclined the stick slightly so that the force has a vertical component and the puck jumps in this direction
* Increasing the magnitude of the force so that the puck comes out in the opposite direction to the player
* The worst case, decreasing its force to zero and the disk comes out in its direction by the other force that had the same magnitude.
The frictional force between two bodies depends mainly on three factors: (I) the adhesion between body surfaces
(ii) roughness of the surface
(iii) deformation of bodies.
<3