Part (a) :
H₂(g) + I₂(s) → 2 HI(g)
From given table:
G HI = + 1.3 kJ/mol
G H₂ = 0
G I₂ = 0
ΔG = G(products) - G(reactants) = 2 (1.3) = 2.6 kJ/mol
Part (b):
MnO₂(s) + 2 CO(g) → Mn(s) + 2 CO₂(g)
G MnO₂ = - 465.2
G CO = -137.16
G CO₂ = - 394.39
G Mn = 0
ΔG = G(products) - G(reactants) = (1(0) + 2*-394.39) - (-465.2 + 2*-137.16) = - 49.3 kJ/mol
Part (c):
NH₄Cl(s) → NH₃(g) + HCl(g)
ΔG = ΔH - T ΔS
ΔG = (H(products) - H(reactants)) - 298 * (S(products) - S(reactants))
= (-92.31 - 45.94) - (-314.4) - (298 k) * (192.3 + 186.8 - 94.6) J/K
= 176.15 kJ - 84.78 kJ = 91.38 kJ
15 grams of NH3 can be dissolved
<h3>Further explanation</h3>
Given
50 grams of water at 50°C
Required
mass of NH3
Solution
Solubility is the maximum amount of a substance that can dissolve in some solvents. Factors that affect solubility
- 1. Temperature:
- 2. Surface area:
- 3. Solvent type:
- 4. Stirring process:
We can use solubility chart (attached) to determine the solubility of NH3 at 50°C
From the graph, we can see that the solubility of NH3 in 100 g of water at 50 C is 30 g
So that the solubility in 50 grams of water is:
= 50/100 x 30
= 15 grams
Answer:
When an atom gains or loses energy, the energy of an electron can change.
An electron in an atom can move from one energy level to another when the atom gains or loses energy.
Explanation:
The possible energies that electrons in an atom
can have are called energy levels.
• An electron cannot exist between energy levels.
https://1.cdn.edl.io/tTlW7xRtvD62xSe7RcZlJr7kSR7XsL93akcgJkbGJBNNcpwY.pdf
*this link can also help* brainly ist plz