Answer:
See below!
Explanation:
A. The picture of the graph is attached. You can tell the amount of protons in an element by looking at the periodic table. The elements are ordered by the number of protons in an element.
B. Carbon and silicon are at the peaks of the chart. The peak is the highest point in a graph.
C. The elements belong to the non-metal group.
D. The halogens are non-metals, and their vapors are colorless.
The halogens are toxic to humans.
Halogen molecules are made of two atoms; they are diatomic.
Halogens react with non-metals to form crystalline compounds that are salts.
The halogens get less reactive going down the group on the periodic table.
Halogens can bleach vegetable dyes and kill bacteria.
E. The picture of the table is attached. To figure which numbers to put where, you need to pay attention to the other numbers. The halogens follow a trend with each of these properties. You have to put in the numbers that fit in among the other numbers.
C is a mixture!!!!!!!!!!!!!
Molarity is measured in moles per Liter. If there are 1.35 g/mL, find out how many grams there are in a liter of solution.
If there are 1000 mL in one liter, we can multiply by 1000 to get g/L
1.35 g/mL x 1 Liter/1000 mL = 1350 g per Liter of solution
By weight, the NaOH is 33% or .33
1350 g x .33 = 445.5 g of NaOH
Molar mass of NaOH is 39.997 g
445.5 g x 1 mol NaOH/39.997 g = 11.13833538 moles per Liter
Rounded to significant figures, the answer is 11 mol/L NaOH
In the compound iodine heptafluoride: (hints: write out the molecular formula of this compound before answering the question. Also be sure you clearly understand the concepts of charge, oxidation numbers, how to determine charge and oxidation numbers, and - most important of all! - the similarities and the differences between charges and oxidation numbers)
<u>Each fluorine atom has a charge of 1</u>
<h3>What is
iodine heptafluoride?</h3>
The interhalogen compound iodine heptafluoride, often known as iodine(VII) fluoride or iodine fluoride, has the chemical formula IF7. As anticipated by VSEPR theory, it exhibits a unique pentagonal bipyramidal structure. The molecule is capable of undergoing the Bartell process, a pseudorotational rearrangement that is similar to the Berry mechanism but for a heptacoordinated system. It produces colorless crystals that melt at 4.5 °C and have a very narrow liquid range with a boiling point of 4.77 °C. The dense mist has an unpleasant, musty smell. The molecule is symmetrical with D5h. suggestion
To learn more about iodine heptafluoride from the given link:
brainly.com/question/28200374
#SPJ4