Answer : The molar heat of solution of KBr is 19.9 kJ/mol
Explanation :
Mass of KBr = 7.00 g
Molar mass of KBr = 119 g/mole
Heat capacity = 2.72 kJ/K
Change in temperature = 0.430 K
First we have to calculate the moles of KBr.

Now we have to calculate the heat of the reaction.

where,
q = amount of heat = ?
= heat capacity = 
= change in temperature = 0.430 K
Now put all the given values in the above formula, we get:


Now we have to calculate the molar heat of solution of KBr.

where,
n = number of moles of KBr

Therefore, the molar heat of solution of KBr is 19.9 kJ/mol
According to the Law of Definite Proportions from Dalton's Atomic Theory, each compound is composed of a fixed ratio of each of its individual elements. So, the number of individual elements per 1 particle of that compound is represented by the subscripts. The answers are as follows:
Table sugar: 12 atoms of carbon, 22 atoms of hydrogen; 11 atoms of oxygen; 45 total atoms
Marble: 1 atom of calcium, 1 atom of carbon; 3 atoms of oxygen; 5 total atoms
Natural gas: 1 atom of carbon, 4 atoms of hydrogen; 5 total atoms
Rubbing alcohol: 3 atoms of carbon, 8 atoms of hydrogen; 1 atom of oxygen; 12 total atoms
Table sugar: 1 atom of silicon; 2 atoms of oxygen; 3 total atoms
Since the measurement is not changing, the answer is 100 mL. Hope this helps.
The correct answer is "Greater at 72 °F " hope it helps