Volume
Temperature
Amount of gas (miles)
Type of gas
Answer:
ΔH = - 5315 kJ.
Explanation:
The given chemical reaction is as follows -
2C₄H₁₀ (g) + 13 O₂ (g) → 8 CO₂ (g) + 10 H₂O (g) + 5315 kJ
In the above equation , the amount of energy i.e. 5315 kJ is released , i.e. it is in the product side , hence , the reaction is an example of an exothermic reaction .
Hence ,
The value of the change in enthalphy , i.e. , the enthalpy of product minus the enthalpy of the product .
Therefore ,
The value of the change in enthalphy = - ve .
Hence ,
ΔH = - 5315 kJ.
When the total surface area of the solute particles is increased, the solute dissolves more rapidly. Breaking a solute into smaller pieces increases its surface area and increases its rate of solution. So, any answer with “as surface area increases, solid dissolves faster” would be correct. :)
Answer:
Even though the two substances possess many similarities, they have some unique properties. In turn, since they have the same properties, if they were the same substance, it would make matters worse, if the same chemical was in two different places, there would not be a difference between them since they are the same, just as it is with are two different chemicals would have differing properties since they are two properties would vary from one another since they are 2 totally different things!
Answer:
The element with electron configuration 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^5 is manganese (25Mn).
Explanation:
Step 1: Data given
The element with electron configuration 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^5
has 25 electrons.
This element has 2 electrons on the first shell, 8 electrons on the second shell, 13 electrons on the third shell and 2 electrons on the outer shell (valence electrons).
This means this element is part of group VII.
The element with 25 electrons, we can find on the periodic table, with atomic number 25.
The element with electron configuration 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^5 is manganese (25Mn).