n=20 mol
(NH)4 SO4
Atomic masses :
N- 14
H- 1
S- 32
O- 16
Therefore M= 14×2 + 1×8 + 32 + 16×4
= 132
m= nM
= 20×132
= 2640g
The two compounds shown indeed have tha same molecular formula, C5 H11 NO2. One of the molecules has a group NH2 and a group COOH, the other molecule has a NOO group, that makes that the two isomers have a completely different structure, with the atoms arranged in a completely different order. <span>This kind of isomers fits in the definition of structural isomers, so the answer is structural isomers.</span>
To get the ∆S of the reaction, we simply have to add the ∆S of the reactants and the ∆S of the products. Then, we get the difference between the ∆S of the products and the ∆S of the products. If the <span>∆S is negative, then the reaction spontaneous. If the otherwise, the reaction is not spontaneous.</span>
Answer:
The relative conjugate acids and bases are listed below:
CH3NH2 → CH3NH3+
H2SO3→ HSO3-
NH3→ NH4+
Explanation:
In a Brønsted-Lowry acid-base reaction, a conjugate acid is the species resulting from a base accepting a proton; likewise, a conjugate base is the species formed after an acid has donated a hydrogen atom (proton).
To this end:
- HSO3- is the conjugate acid of H2SO3 i.e sulfuric acid has lost a proton (H+)
- NH4+ is the conjugate acid of NH3 i.e the base ammonia has gained a proton (H+)
- OH- is the conjugate base of H20
- CH3NH3+ is the conjugate base of the base CH3NH2 methylamine