Basically this is used in calculating the nuclear binding energy by converting the mass defect (calculated first) to energy and if we recall, Einstein's equation E=mc2 is the perfection equation to use because E=mc2 in which E represents units of energy, m represents units of mass, and c 2 is the speed of light squared.
Answer:
1) acetylide
2) enol
3) aldehydes
4) tautomers
5) alkynes
6) Hydroboration
7) Keto
8) methyl ketones
Explanation:
Acetylide anions (R-C≡C^-) is a strong nucleophile. Being a strong nucleophile, we can use it to open up an epoxide ring by SN2 mechanism. The attack of the acetylide ion occurs from the backside of the epoxide ring. It must attack at the less substituted side of the epoxide.
Oxomercuration of alkynes and hydroboration of alkynes are similar reactions in that they both yield carbonyl compounds that often exhibit keto-enol tautomerism.
The equilibrium position may lie towards the Keto form of the compound. Usually, if terminal alkynes are used, the product of the reaction is a methyl ketone.
You should read up on Proust's law, better known as the Law of Definite Proportions. This is a chemical law that defines your question more generally, on why the ratio of elements and ions are always fixed.
Basically, this compound Magnesium(II) Chloride is MgCl2 because it has the same number of protons, neutrons, and electrons all the way. This defines the properties of the compound or atom.