1) mass composition
N: 30.45%
O: 69.55%
-----------
100.00%
2) molar composition
Divide each element by its atomic mass
N: 30.45 / 14.00 = 2.175 mol
O: 69.55 / 16.00 = 4.346875
4) Find the smallest molar proportion
Divide both by the smaller number
N: 2.175 / 2.175 = 1
O: 4.346875 / 2.175 = 1.999 = 2
5) Empirical formula: NO2
6) mass of the empirical formula
14.00 + 2 * 16.00 = 46.00 g
7) Find the number of moles of the gas using the equation pV = nRT
=> n = pV / RT = (775/760) atm * 0.389 l / (0.0821 atm*l /K*mol * 273.15K)
=> n = 0.01769 moles
8) Find molar mass
molar mass = mass in grams / number of moles = 1.63 g / 0.01769 mol = 92.14 g / mol
9) Find how many times the mass of the empirical formula is contained in the molar mass
92.14 / 46.00 = 2.00
10) Multiply the subscripts of the empirical formula by the number found in the previous step
=> N2O4
Answer: N2O4
Answer:
b mi disputa se eu não asetar
Answer:
number of hydrogen atom in 1.8 mole of NH2OH = 
Explanation:
percentage of hydrogen in NH2OH = mass of hydrogen / mass of whole molecule
=
\times 100
= 9.09 percentage
therefore number of moles in 1.8 moles of hydroxy amine = 
= .16 moles of hydrogen
number of hydrogen atom = (number of moles )×(avagadro number)
=
atoms of hydrogen
Answer:
Anode half reaction;
Co(s) ----> Co^2+(aq) + 2e
Cathode half reaction;
2Ag^+(aq) + 2e-------> 2Ag(s)
Explanation:
A voltaic cell is an electrochemical cell that spontaneously produces electrical energy from chemical reactions. A voltaic cell comprises of an anode (where oxidation occurs) and a cathode (where reduction occurs). The both electrodes are connected with a wire . A salt bridge ensures charge neutrality in the anode and cathode compartments. Electrons flow from anode to cathode.
For the cell referred to in the question;
Anode half reaction;
Co(s) ----> Co^2+(aq) + 2e
Cathode half reaction;
2Ag^+(aq) + 2e-------> 2Ag(s)