Answer:
a fracture will occur, because the Kc value is greater than the KIC (48.9901 MPa > 40 MPa)
Explanation:
the solution is in the attached Word file
Answer:
γ
=0.01, P=248 kN
Explanation:
Given Data:
displacement = 2mm ;
height = 200mm ;
l = 400mm ;
w = 100 ;
G = 620 MPa = 620 N//mm²; 1MPa = 1N//mm²
a. Average Shear Strain:
The average shear strain can be determined by dividing the total displacement of plate by height
γ
= displacement / total height
= 2/200 = 0.01
b. Force P on upper plate:
Now, as we know that force per unit area equals to stress
τ = P/A
Also, τ = Gγ
By comapring both equations, we get
P/A = Gγ
------------ eq(1)
First we need to calculate total area,
A = l*w = 400 * 100= 4*10^4mm²
By putting the values in equation 1, we get
P/40000 = 620 * 0.01
P = 248000 N or 2.48 *10^5 N or 248 kN
Answer:
The couples are not all on one axis or plane for that matter but if the A and B connector had to be specified it would go by the yz axis diagonal to the x axis with a magnitude of about 15. The direction of the axis would be pointed up to the second quadrant. Hope this was helpful
Explanation:
Answer:
the correct distance is 202 ft
Explanation:
The computation of the correct distance is shown below:
But before that correction to be applied should be determined
= (101 ft - 100 ft) ÷ (100 ft) × 200 ft
= 2 ft
Now the correct distance is
= 200 ft + 2 ft
= 202 ft
Hence, the correct distance is 202 ft
The same would be relevant and considered too
The evaporation rate of the n-Hexane is 
<u>Explanation</u>:
This is a situation regarding diffusing A through non-diffusing B.
A = n-Hexane B=Air
Where the molar flux is provided by,



the vapor pressure at hexane

For wind, assume negligible hexane is present, hence 
Now,







where T = 298 K
substituting all in the equation, we get


Now,Flux
area = Molar rate of evaporation
Evaporation rate = 
Evaporation rate =