Answer:
Action-at-a-Distance Forces. Frictional Force. Gravitational Force. Tension Force ... The force of gravity on earth is always equal to the weight of the object as ... The friction force is the force exerted by a surface as an object moves across it or ... The force of air resistance is often observed to oppose the motion of an object
Explanation:
Answer:
(a) ΔU=747J
(b) γ=1.3
Explanation:
For (a) change in internal energy
According to first law of thermodynamics the change in internal energy is given as
ΔU=Q-W
Substitute the given values
ΔU=970J-223J
ΔU=747J
For(b) γ for the gas.
We can calculate γ by ratio of heat capacities of the gas
γ=Cp/Cv
Where Cp is the molar heat capacity at constant pressure
Cv is the molar heat capacity at constant volume
To calculate γ we first need to find Cp and Cv
So
For Cp
As we know
Q=nCpΔT
Cp=(Q/nΔT)

From relation of Cv and Cp we know that
Cp=Cv+R
Where R is gas constant equals to 8.314J/mol.K
So

So
γ=Cp/Cv
γ=[(37J/mol.K) / (28.687J/mol.K)]
γ=1.3
Answer:
When there are two or more electrical devices in a circuit with an energy source, there are a couple of basic ways by which we connect them. They can either be connected in series or parallel
B. It reflects light rays outward.
A convex mirror looks like this ⊂. So when light rays hit the outward curves, it bends the light rays outwards, and backwards, and it would appear to be coming from its center called the focus.
Answer:
Explanation:
a ) Time period T = 2 s
Angular velocity ω = 2π / T
= 2π / 2 = 3.14 rad /s
Initial moment of inertia I₁ = 200 + mr²
= 200 + 25 x 2.5²
=356.25
Final moment of inertia
I₂ = 200 + 25 X 1.5 X 1.5
= 256.25
b ) We apply law of conservation of momentum
I₁ X ω₁ = I₂ X ω₂
ω₂ = I₁ X ω₁ / I₂
Putting the values

ω₂ = 4.365 rad s⁻¹
c ) Increase in rotational kinetic energy
=1/2 I₂ X ω₂² - 1/2 I₁ X ω₁²
.5 X 256.25 X 4.365² - .5 X 356.25 X 3.14²
= 684.95 J
This energy comes from work done against the centripetal pseudo -force.