1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
forsale [732]
3 years ago
13

What is the critical angle for light traveling from crown glass (n = 1.52) into water (n = 1.33)?

Physics
2 answers:
Flauer [41]3 years ago
6 0

Answer:

61 degrees, I just did the test.

Explanation:

tekilochka [14]3 years ago
4 0

Answer: 61 degrees

Explanation:

I just did the question and got it right

You might be interested in
A boy is whirling a stone around his head by means of a string. The string makes one complete revolution every second; and the m
Damm [24]

Answer

given,                                                

Tension of string is F                                                  

velocity is increased and the radius is not changed.      

the string makes two complete revolutions every second

consider the centrifugal force acting on the stone          

  = \dfrac{mv^2}{r}                          

now centrifugal force is balanced by tension

T =\dfrac{mv^2}{r}                                

From the above expression we can clearly see that tension is directly proportional to velocity and inversely proportional to radius.

When radius is not changing velocity is increasing means tension will also increase in the string.

8 0
3 years ago
A rock with a mass of 540 g in air is found to have an apparent mass of 342 g when submerged in water. (a) What mass of water is
AleksandrR [38]

(a) 198 g

When the rock is submerged into the water, there are two forces acting on the rock:

- its weight, equal to W=mg (m=mass, g=acceleration of gravity), downward

- the buoyant force, equal to B=m_w g (m_w=mass of water displaced), upward

So the resultant force, which is the apparent weight of the rock (W'), is

W'=W-B

which can be rewritten as

m'g = mg-m_w g

where m' is the apparent mass of the rock. Using:

m = 540 g

m' = 342 g

we find the mass of water displaced

m_w = m-m'=540 g-342 g=198 g

(b) 1.98\cdot 10^{-4} m^3

If the rock is completely submerged, the volume of the rock corresponds to the volume of water  displaced.

The volume of water displaced is given by

V_w = \frac{m_w}{\rho_w}

where

m_w = 198 g = 0.198 kg is the mass of the water displaced

\rho_w = 1000 kg/m^3 is the density of the water

Substituting,

V_w = \frac{0.198}{1000}=1.98\cdot 10^{-4} m^3

And so this is also the volume of the rock.

(c) 2727 kg/m^3

The average density of the rock is given by

\rho = \frac{m}{V}

where

m = 540 g = 0.540 kg is the mass of the rock

V=1.98\cdot 10^{-4} m^3 is its volume

Substituting into the equation, we find

\rho = \frac{0.540 kg}{1.98\cdot 10^{-4}}=2727 kg/m^3

3 0
4 years ago
Which of the following does not cause an earthquake
antoniya [11.8K]

Answer:

C

Explanation:

A Tsunami is usually the result of an earthquake under the sea

7 0
3 years ago
PLEASE HELP ME 45 POINTS
sergij07 [2.7K]

Answer:

a) We kindly invite you to see the explanation and the image attached below.

b) The acceleration of the masses is 4.203 meters per square second.

c) The tension force in the cord is 28.02 newtons.

d) The system will take approximately 0.845 seconds to cover a distance of 1.5 meters.

e) The final speed of the system is 3.551 meters per second.

Explanation:

a) At first we assume that pulley and cord are both ideal, that is, masses are negligible and include the free body diagrams of each mass and the pulley in the image attached below.

b) Both masses are connected to each other by the same cord, the direction of acceleration will be dominated by the mass of greater mass (mass A) and both masses have the same magnitude of acceleration. By the 2nd Newton's Law, we create the following equation of equilibrium:

Mass A

\Sigma F = T - m_{A}\cdot g = -m_{A}\cdot a (1)

Mass B

\Sigma F = T - m_{B}\cdot g = m_{B}\cdot a (2)

Where:

T - Tension force in the cord, measured in newtons.

m_{A}, m_{B} - Masses of blocks A and B, measured in kilograms.

g - Gravitational acceleration, measured in meters per square second.

a - Net acceleration of the each block, measured in meters per square second.

By subtracting (2) by (1), we get an expression for the acceleration of each mass:

m_{B}\cdot a +m_{A}\cdot a = T-m_{B}\cdot g -T + m_{A}\cdot g

(m_{B}+m_{A})\cdot a = (m_{A}-m_{B})\cdot g

a = \frac{m_{A}-m_{B}}{m_{B}+m_{A}} \cdot g

If we know that m_{A} = 5\,kg, m_{B} = 2\,kg and g = 9.807\,\frac{m}{s^{2}}, then the acceleration of the masses is:

a = \left(\frac{5\,kg-2\,kg}{5\,kg+2\,kg}\right) \cdot\left(9.807\,\frac{m}{s^{2}} \right)

a = 4.203\,\frac{m}{s^{2}}

The acceleration of the masses is 4.203 meters per square second.

c) From (2) we get the following expression for the tension force in the cord:

T = m_{B}\cdot (a+g)

If we know that m_{B} = 2\,kg, g = 9.807\,\frac{m}{s^{2}} and a = 4.203\,\frac{m}{s^{2}}, then the tension force in the cord:

T = (2\,kg)\cdot \left(4.203\,\frac{m}{s^{2}}+9.807\,\frac{m}{s^{2}}  \right)

T = 28.02\,N

The tension force in the cord is 28.02 newtons.

d) Given that system starts from rest and net acceleration is constant, we determine the time taken by the block to cover a distance of 1.5 meters through the following kinematic formula:

\Delta y  = \frac{1}{2}\cdot a\cdot t^{2} (3)

Where:

a - Net acceleration, measured in meters per square second.

t - Time, measured in seconds.

\Delta y - Covered distance, measured in meters.

If we know that a = 4.203\,\frac{m}{s^{2}} and \Delta y = 1.5\,m, then the time taken by the system is:

t = \sqrt{\frac{2\cdot \Delta y}{a} }

t = \sqrt{\frac{2\cdot (1.5\,m)}{4.203\,\frac{m}{s^{2}} } }

t \approx 0.845\,s

The system will take approximately 0.845 seconds to cover a distance of 1.5 meters.

e) The final speed of the system is calculated by the following formula:

v = a\cdot t (4)

Where v is the final speed of the system, measured in meters per second.

If we know that a = 4.203\,\frac{m}{s^{2}} and t \approx 0.845\,s, then the final speed of the system is:

v = \left(4.203\,\frac{m}{s^{2}} \right)\cdot (0.845\,s)

v = 3.551\,\frac{m}{s}

The final speed of the system is 3.551 meters per second.

8 0
3 years ago
A 115 g hockey puck sent sliding over ice is stopped in 15.1 m by the frictional force on it from the ice.
Hoochie [10]

Answer:

(a) Ff = 0.128 N

(b μk = 0.1135

Explanation:

kinematic analysis

Because the hockey puck  moves with uniformly accelerated movement we apply the following formulas:

vf=v₀+a*t Formula (1)

d= v₀t+ (1/2)*a*t² Formula (2)

Where:  

d:displacement in meters (m)  

t : time in seconds (s)

v₀: initial speed in m/s  

vf: final speed in m/s  

a: acceleration in m/s

Calculation of the acceleration of the  hockey puck

We apply the Formula (1)

vf=v₀+a*t      v₀=5.8 m/s ,  vf=0

0=5.8+a*t

-5.8 = a*t

a= -5.8/t   Equation (1)

We replace a= -5.8/t in the Formula (2)

d= v₀*t+ (1/2)*a*t²   ,  d=15.1 m ,  v₀=5.8 m/s

15.1 = 5.8*t+ (1/2)*(-5.8/t)*t²  

15.1= 5.8*t-2.9*t

15.1= 2.9*t

t = 15.1 / 2.9

t= 5.2 s

We replace t= 5.2 s in the equation (1)

a= -5.8/5.2

a= -1.115 m/s²

(a) Calculation of the  frictional force (Ff)

We apply Newton's second law

∑F = m*a    Formula (3)

∑F : algebraic sum of the forces in Newton (N)

m : mass in kilograms (kg)

a : acceleration in meters over second square (m/s²)

Look at the free body diagram of the  hockey puck in the attached graphic

∑Fx = m*a     m= 115g * 10⁻³ Kg/g = 0.115g    ,  a= -1.12 m/s²

-Ff = 0.115*(-1.115)  We multiply by (-1 ) on both sides of the equation

Ff = 0.128 N

(b) Calculation of the coefficient of friction (μk)

N: Normal Force (N)

W=m*g= 0.115*9.8= 1.127 N : hockey puck  Weight

g: acceleration due to gravity =9.8 m/s²

∑Fy = 0

N-W=0

N = W

N =  1.127 N

μk = Ff/N

μk = 0.128/1.127

μk = 0.1135

8 0
3 years ago
Other questions:
  • Which is a renewable energy resource?<br><br><br> coal<br> petroleum<br> wind<br> natural gas
    5·2 answers
  • How Many Days Would a Scientist Have To Wait For The Radioactivity To Be 12.5 The Starting Amount
    13·2 answers
  • A rope vibrates every 0.5 s. what is the frequency of the waves?
    9·2 answers
  • 18. A 2.0-ohm resistor is connected in a series with a 20.0 -V battery and a three-branch parallel network with branches whose r
    10·2 answers
  • Currents circulate in a piece of metal that is pulled through a magnetic field. What are these currents called?
    12·1 answer
  • The frequency of a wave is the inverse of the wave's _______?
    14·2 answers
  • The usefulness of blotting techniques in molecular biology is that
    12·1 answer
  • 1)what's the recommend amount of uv protection that sunglasses should provide?
    8·2 answers
  • A/An _____________ ( wind vane / anemometer ) can be used to measure wind speed.
    12·1 answer
  • Clinical psychologists are concerned with everyday problems of adjustment.<br> True<br> False
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!