The max is the largest it could get so ( ,0)
Answer:
The <em><u>n = 2 → n = 3</u></em> transition results in the absorption of the highest-energy photon.
Explanation:

Formula used for the radius of the
orbit will be,
where,
= energy of
orbit
n = number of orbit
Z = atomic number
Here: Z = 1 (hydrogen atom)
Energy of the first orbit in H atom .

Energy of the second orbit in H atom .

Energy of the third orbit in H atom .

Energy of the fifth orbit in H atom .

Energy of the sixth orbit in H atom .

Energy of the seventh orbit in H atom .

During an absorption of energy electron jumps from lower state to higher state.So, absorption will take place in :
1) n = 2 → n = 3
2) n= 5 → n = 6
Energy absorbed when: n = 2 → n = 3


Energy absorbed when: n = 5 → n = 6


1.89 eV > 0.166 eV
E> E'
So,the n = 2 → n = 3 transition results in the absorption of the highest-energy photon.
States that particles are attracts with every other particle. wich force is directily proportional product of two masses and inversely proportional to the distance between the centers.
The number of waves that pass a fixed point in a given amount of time is wave frequency. Wave frequency can be measured by counting the number of crests (high points) of waves that pass the fixed point in 1 second or some other time period. The higher the number is, the greater the frequency of the waves. :)