Answer:
Explanation:
mass of liquid m₁ = 161 g
temperature t₁ = 31.8
final temperature t₂ = 28.8
Let m g of ice melted to cool the liquid
heat gained = mass x latent heat of fusion + mass x loss of temp x s heat of water
= m x 80 + m x 1 x ( 31.8 - 28.8 ) ( latent heat of ice = 80 cals/g )
= 83 m
heat lost = 161 x 1 x ( 31.8 - 28.8 ) ( specific heat of water = 1 cal / g / k )
= 161 x 3
heat lost = heat gained
83 m = 161 x 3
m = 5.82 g
mass of remaining ice = 131 - 5.82
= 125.18 g
It would be a cold wave.
Ice ages occur when the temperatures are extremely cold.(long-term)
The magnitude of the angular momentum of the two-satellite system is best represented as, L=m₁v₁r₁-m₂v₂r₂.
<h3>What is angular momentum.?</h3>
The rotational analog of linear momentum is angular momentum also known as moment of momentum or rotational momentum.
It is significant in physics because it is a conserved quantity. the total angular momentum of a closed system remains constant. Both the direction and magnitude of angular momentum are conserved.
The magnitude of the angular momentum of the two-satellite system is best represented as;
L=∑mvr
L=m₁v₁r₁-m₂v₂r₂
Hence, the magnitude of the angular momentum of the two-satellite system is best represented as, L=m₁v₁r₁-m₂v₂r₂.
To learn more about the angular momentum, refer to the link;
brainly.com/question/15104254
#SPJ4