Answer:
The variable manipulated or controlled by the experimenter is called the independent variable.
Example:
If the flow velocity at the bottom of a tank is measured by varying the height of water in the tank, we are measuring velocity as a function of water height.
Therefore,
water height = independent variable (controlled)
velocity = dependent variable (measured in response to water height).
Mathematically,
v = f(h)
where v = response variable (dependent)
h = controlled variable (independent).
Based on Newton's second law of motion, the net force applied to an object is equal to the product of the mass of the object and the acceleration it experiences. That is,
F = ma
If we are to assume that the net force is constant and that the mass is increased, the acceleration should therefore decrease in order to make constant the value at the right-hand side of the equation.
Answer:
v = 66 m/s
Explanation:
Given that,
The initial velocity of a car, u = 0
Acceleration of the car, a = 11 m/s²
We need to find the final velocity of the toy after 6 seconds.
Let v is the final velocity. It can be calculated using first equation of motion. It is given by :
v = u +at
v = 0 + 11 m/s² × 6 s
v = 66 m/s
So, the final velocity of the car is 66 m/s.
Answer:
Following are the solution to the given question:
Explanation:
Its strength from both charges is equivalent or identical. The power is equal. And it is passed down

Therefore, the extent doesn't rely on the fact that charges are the same or different. Newton's third law complies with Electrostatic Charges due to a couple of charges. They are similar in magnitude, and they're in the other way.
