1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Furkat [3]
3 years ago
9

If the charge remains the same but the radius of the sphere is doubled, the electric flux coming out of it will be

Physics
1 answer:
il63 [147K]3 years ago
4 0

Answer:

Explanation:

We shall apply Gauss's theorem for electric flux to solve the problem . According to this theorem , total electric flux coming out of a charge q can be given by the following relation .

∫ E ds = q / ε

Here q is assumed to be enclosed in a closed surface , E is electric intensity on the surface so

∫ E ds represents total electric flux passing through the closed surface due to charge q enclosed in the surface .

This also represents total flux coming out of the charge q on all sides .

This is equal to q / ε where ε is a constant called permittivity  which depends upon the medium enclosing the charge . For air , its value is 8.85 x 10⁻¹² .

If charge remains the same but radius of the sphere enclosing the charge is doubled , the flux coming out of charge will remain the same .

It is so because flux coming out of charge q is q / ε . It does not depend upon surface area enclosing the charge . It depends upon two factors

1 ) charge q and

2 ) the permittivity of medium  ε  around .

You might be interested in
When waves enter a denser medium, they bend the normal.<br><br> A) Toward<br> B) Away From
Andreyy89
The answer is bend towards normal.
7 0
3 years ago
Read 2 more answers
A strip of copper 190 µm thick and 4.20 mm wide is placed in a uniform magnetic field of magnitude B = 0.78 T, that is perpendic
Veronika [31]

Answer:

V = 9.682 × 10^(-6) V

Explanation:

Given data

thick = 190 µm

wide = 4.20 mm

magnitude B = 0.78 T

current  i = 32 A

to find out

Calculate V

solution

we know v formula that is

V = magnitude× current / (no of charge carriers ×thickness × e

here we know that number of charge carriers/unit volume for copper = 8.47 x 10^28 electrons/m³

so put all value we get

V = magnitude× current / (no of charge carriers ×thickness × e

V = 0.78 × 32 / (8.47 x 10^28  × 190 × 1.602 x 10^(-19)

V = 9.682 × 10^(-6) V

3 0
3 years ago
A wind turbine is a machine that spins when the wind blows. The turbine blades are attached to a
Hunter-Best [27]

Answer: B, increase the rate at which he turns the crank

Explanation: i got it right

3 0
2 years ago
A physics student stands on a cliff overlooking a lake and decides to throw a softball to her friends in the water below. She th
Andre45 [30]

The horizontal distance covered by the ball before hitting the water is 70.4 m

Explanation:

The motion of the ball is the motion of a projectile, so it consists of two independent motions:

  • A uniform motion along the horizontal (x) direction
  • A uniformly accelerated motion along the vertical (y) direction

We start by calculating the time of flight of the ball. This can be done by analyzing the vertical motion. We can use the following suvat equation:

s=u_y t + \frac{1}{2}at^2

where:

s = -16.5 m is the vertical displacement of the ball (it is negative because we take upward as positive direction)

u_y is the initial vertical velocity of the ball, which is given by

u_y = u sin \theta

where

u = 23.5 m/s is the initial velocity

\theta=33.5^{\circ} is the angle of projection

Substituting,

u_y=(23.5)(sin 33.5^{\circ})=13.0 m/s

a=g=-9.8 m/s^2 is the acceleration of gravity, downward

Substituting everything into the equation we get:

-16.5=13.0t-4.9t^2\\4.9t^2-13.0t-16.5=0

Solving the equation for t, we find the time of flight of the ball:

t = -0.94 s

t = 3.59 s

We ignore the 1st solution since it is negative, so the ball reaches the water after 3.59 seconds.

Now we analyze the horizontal motion of the ball. The horizontal velocity is constant and it is:

v_x=u cos \theta=(23.5)(cos 33.5^{\circ})=19.6 m/s

Therefore, the horizontal distance covered in a time t is

d=v_x t

And substituting t = 3.59 s, we find

d=(19.6)(3.59)=70.4 m

So, the horizontal distance covered by the ball before hitting the water is 70.4 m.

Learn more about projectile motion:

brainly.com/question/8751410

#LearnwithBrainly

4 0
4 years ago
How does an increase in thermal energy affect the kinetic energy of the particles in each state of matter
Alenkinab [10]

Explanation:

when there is an increase in thermal energy, the kinetic energy if the matter increases as well.

7 0
3 years ago
Other questions:
  • What is the potential energy of the bowling ball as it sits on top of a building ?​
    6·1 answer
  • What is the slope of a line that is perpendicular to the x-axis?
    14·1 answer
  • Which of the following is an element?
    7·1 answer
  • Please help on this one?
    7·1 answer
  • Help me please!!!!!!!!!!!!!/ Science
    7·1 answer
  • A 37-cm-long wire of linear density 18 g/m vibrating at its second mode, excites the third vibrational mode of a tube of length
    12·2 answers
  • You've been called in to investigate a construction accidentin
    15·1 answer
  • Apply: The earth's gravity is pulling on you. Are you pulling on the earth? Explain your
    9·1 answer
  • A ball is rolling across the floor. Why does the ball come to a stop?
    9·2 answers
  • The kinetic energy of an object is increased by a factor of 4 . By what factor is the magnitude of its momentum changed?(a) 16(b
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!