1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Furkat [3]
3 years ago
9

If the charge remains the same but the radius of the sphere is doubled, the electric flux coming out of it will be

Physics
1 answer:
il63 [147K]3 years ago
4 0

Answer:

Explanation:

We shall apply Gauss's theorem for electric flux to solve the problem . According to this theorem , total electric flux coming out of a charge q can be given by the following relation .

∫ E ds = q / ε

Here q is assumed to be enclosed in a closed surface , E is electric intensity on the surface so

∫ E ds represents total electric flux passing through the closed surface due to charge q enclosed in the surface .

This also represents total flux coming out of the charge q on all sides .

This is equal to q / ε where ε is a constant called permittivity  which depends upon the medium enclosing the charge . For air , its value is 8.85 x 10⁻¹² .

If charge remains the same but radius of the sphere enclosing the charge is doubled , the flux coming out of charge will remain the same .

It is so because flux coming out of charge q is q / ε . It does not depend upon surface area enclosing the charge . It depends upon two factors

1 ) charge q and

2 ) the permittivity of medium  ε  around .

You might be interested in
A greyhound's velocity changes from rest to 19 m/s in 2 seconds. What is the greyhound's average acceleration?
Andrew [12]

It should be b)9.5m/s2

6 0
2 years ago
Consider a sample of gas in a container on a comfortable spring day in chicago, il. the celsius temperature suddenly doubles, an
Vinil7 [7]

To solve this problem, we must first assume that the gas acts like an ideal gas so that we can use the ideal gas equation:

 P V = n R T

where P is the pressure, V is the volume, n is the number of moles, R is the universal gas constant and T is the absolute temperature

 

Assuming that the number of moles is constant, then we can write all the variables in the left side:

P V / T = k            where k is a constant (n times R)

 

Equating two conditions or two states:

P1 V1 / T1 = P2 V2 / T2

We are given that V2 = 2 V1 therefore

P1 V1 T2 = P2 (2V1) T1

P1 T2 = 2 P2 T1

 

Additionally we are given that the temperature in Celsius is doubled, however in the formula we use the absolute temperature in Kelvin, therefore:

T1 (K) = T1 + 273.15

T2 (K) = 2T1 + 273.15

and P1 = 12 atm

 

Substituting:

<span>12 (2T1 + 273.15)  = 2 P2 (T1 + 273.15)</span>

P2 = 6 (2T1 + 273.15) / (T1 + 273.15)

 

Assuming that a nice spring day in Chicago has a temperature of 15 Celsius, therefore:

P2 = 6 (2*15 + 273.15) / (15 + 273.15)

<span>P2 = 6.312 atm</span>

3 0
3 years ago
Chris walks 25 m in the positive direction on a number line, then turns around and walks 15 m in the opposite direction. What is
7nadin3 [17]

Answer:

|d|  =  |(25 - 15)|  \\  |d|  = 10 \: m

3 0
2 years ago
A satellite of mass m is in a circular orbit of radius R2 around a spherical planet of radius R1 made of a material with density
Amiraneli [1.4K]

Answer:

a)      K = 2/3 π G m ρ R₁³ / R₂ ,  b) U = - G m M / r

Explanation:

The law of universal gravitation is

     F = G m M / r²

Part A

Let's use Newton's second law

     F = m a

The acceleration is centripetal

     a = v² / R₂

     

      G m M / R₂² = m v² / R₂

      v² = G M / R₂

They give us the density of the planet

    ρ = M / V

    V = 4/3 π R₁³

    M =   ρ V

    M =   ρ 4/3 π R₁³

    v² = 4/3 π G  ρ R₁³ / R₂

    K = ½ m v²

    K = ½ m (4/3 π G ρ R₁³ / R₂)

    K = 2/3 π G m ρ R₁³ / R₂

Part B

Potential energy and strength are related

     F = - dU / dr

     ∫ dU = - ∫ F. dr

The force was directed towards the center and the vector r outwards therefore there is an angle of 180º between the two cos 180 = -1

    U- U₀ = G m M ∫ dr / r²

    U - U₀ = G m M (- r⁻¹)

We evaluate for

    U - U₀ = -G m M (1 / r_{f} -  1 /r_{i})

They indicate that for ri = ∞     U₀ = 0

    U = - G m M / r

6 0
3 years ago
Which statement is supported by this scenario?
Temka [501]

Answer:

For Yanni, the speed of the ball is 15 m/s, and for the quarterback, the speed of the ball is 8 m/s.

Explanation:

6 0
2 years ago
Read 2 more answers
Other questions:
  • Two convex thin lenses with focal lengths 10.0 cm and 20.0 cm are aligned on a common axis, running left to right, the 10-cm len
    11·1 answer
  • A circuit has a voltage drop of 24.0 V across a 30.0 resistor that carries a
    6·2 answers
  • Objects 1 and 2 attract each other with a electrostatic force of 18.0 units. If the charge
    5·1 answer
  • What do you mean by magnitude of an electric field due to a point charge. State its SI unit.
    12·1 answer
  • A car accelerates from rest to a velocity of 5 meters/second in 4 seconds. What is its average acceleration over this period of
    6·2 answers
  • A 100 N box sits on a 30 degree incline. If the static coefficient of friction is 0.1, what is the magnitude of the static frict
    6·1 answer
  • A steel ball of mass 0.500 kg is fastened to a cord that is 70.0 cm long and fixed at the far end. The ball is then released whe
    15·1 answer
  • Curious George is whirling a 2.0 kg bunch of bananas on a smooth floor in a circular path having a radius of 0.50 m. What force
    9·1 answer
  • Explain the process of <br>anomalous expansion of water​
    12·1 answer
  • Please help
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!