Answer:
The percentage of the mechanical energy of the oscillator lost in each cycle is 6.72%
Explanation:
Mechanical energy (Potential energy, PE) of the oscillator is calculated as;
PE = ¹/₂KA²
During the first oscillation;
PE₁ = ¹/₂KA₁²
During the second oscillation;
A₂ = A₁ - 0.0342A₁ = 0.9658A₁
PE₂ = ¹/₂KA₂²
PE₂ = ¹/₂K (0.9658A₁)²
PE₂ = (0.9658²)¹/₂KA₁²
PE₂ = (0.9328)¹/₂KA₁²
PE₂ = 0.9328PE₁
Percentage of the mechanical energy of the oscillator lost in each cycle;

Therefore, the percentage of the mechanical energy of the oscillator lost in each cycle is 6.72%
Answer:
0.96 m
Explanation:
First, convert km/h to m/s.
162.3 km/h × (1000 m/km) × (1 hr / 3600 s) = 45.08 m/s
Now find the time it takes to move 20 m horizontally.
Δx = v₀ t + ½ at²
20 m = (45.08 m/s) t + ½ (0 m/s²) t²
t = 0.4436 s
Finally, find how far the ball falls in that time.
Δy = v₀ t + ½ at²
Δy = (0 m/s) (0.4436 s) + ½ (-9.8 m/s²) (0.4436 s)²
Δy = -0.96 m
The ball will have fallen 0.96 meters.
Answer:

Explanation:
Given that,
The mass of the paperclip, m = 1.8 g = 0.0018 kg
We need to find the energy obtained. The relation between mass and energy is given by :

Where
c is the speed of light
So,

So, the energy obtained is
.
Answer:
They will not meet
h-hX=1.2*g*t²
hX=v0*t-(1/2*g*t²)
Explanation:
fall h=1/2*g*t²
elevation time if v0=20 m/s te=v0/g=20 m/s /9.81 m/s²=2.0387s
hmax=v0²/(2*g)=(400 m²/s²)/19.62 m/s²2=20.387 m
free fall
t=2.0387s yields hX=1/2*g*t²=20.387 m
h-hX=200m - 20.387 m=179,613 m.
so, the second body has not enough initianoal speed to reach a meeting point
U can try to use capacitor , the value of capacitor depends on circuit
ripple factors signifies the ac components, by def its ratio of rms value of ac component to value of dc component
so in order to reduce use of a capacitor which denies the sudden changes in voltage, which is the charracteristic of Ac signals
hope this helps