1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rama09 [41]
2 years ago
7

The distance from Abdullah's house to his school is 2.4km. Abdulla takes 0.6h to go to school on his cycle but takes only 0.4h t

o return home. His average speed is
Physics
1 answer:
vladimir1956 [14]2 years ago
5 0

Answer:

The average speed can be calculated as the quotient between the distance travelled and the time needed to travel that distance.

To go to the school, he travels 2.4 km in 0.6 hours, then here the average speed is:

s = (2.4km)/(0.6 hours) = 4 km/h

To return to his home, he travels 2.4km again, this time in only 0.4 hours, then here the average speed is:

s' = (2.4 km)/(0.4 hours) = 6 km/h.

Now, if we want the total average speed (of going and returning) we have that the total distance traveled is two times the distance between his home and school, and the total time is 0.6 hours plus 0.4 hours, then the average speed is:

S = (2*2.4 km)/(0.6 hours + 0.4 hours)

S = (4.8km)/(1 h) = 4.8 km/h

You might be interested in
Summarize what you learned this week about the electromagnetic spectrum
svetoff [14.1K]

Answer:

I only really know the "How do we use these EM waves in our lives?" part srry

Explanation:

EM waves are used to make sure you cellphone, radio, TV, and etc. have service/ connection.

8 0
3 years ago
Read 2 more answers
A stationary siren creates an 894 Hz
valentina_108 [34]

Answer:

12.3 m/s

Explanation:

The Doppler equation describes how sound frequency depends on relative velocities:

fr = fs (c + vr)/(c + vs),

where fr is the frequency heard by the receiver,

fs is the frequency emitted at the source,

c is the speed of sound,

vr is the velocity of the receiver,

and vs is the velocity of the source.

Note: vr is positive if the receiver is moving towards the source, negative if away.

Conversely, vs is positive if the receiver is moving away from the source, and negative if towards.

Given:

fs = 894 Hz

fr = 926 Hz

c = 343 m/s

vs = 0 m/s

Find: vr

926 = 894 (343 + vr) / (343 + 0)

vr = 12.3

The speed of the car is 12.3 m/s.

5 0
3 years ago
A guitar string has a linear density of 8.30 ✕ 10−4 kg/m and a length of 0.660 m. the tension in the string is 56.7 n. when the
Sedbober [7]
Ans: Beat Frequency = 1.97Hz

Explanation:
The fundamental frequency on a vibrating string is 

f =   \sqrt{ \frac{T}{4mL} }<span>  -- (A)</span>

<span>here, T=Tension in the string=56.7N,
L=Length of the string=0.66m,
m= mass = 8.3x10^-4kg/m * 0.66m = 5.48x10^-4kg </span>


Plug in the values in Equation (A)

<span>so </span>f = \sqrt{ \frac{56.7}{4*5.48*10^{-4}*0.66} }<span> = 197.97Hz </span>

<span>the beat frequency is the difference between these two frequencies, therefore:
Beat frequency = 197.97 - 196.0 = 1.97Hz
-i</span>
3 0
3 years ago
Read 2 more answers
A spring gun is made by compressing a spring in a tube and then latching the spring at the compressed position. A 4.97-g pellet
dimaraw [331]

Answer:

v  = 2.8898 \frac{m}{s}

Explanation:

This is a problem easily solve using energy conservation. As there are no non-conservative forces, we know that the energy is conserved.

When the spring is compressed downward, the spring has elastic potential energy. When the spring is relaxed, there is no elastic potential energy, but the pellet will have gained gravitational potential energy and kinetic energy. Lets see what are the terms for each of this.

<h3>Elastic potential energy</h3>

We know that a spring following Hooke's Law has a elastic potential energy:

E_{ep} = \frac{1}{2} k (\Delta x)^2

where \Delta x is the displacement from the relaxed length and k is the spring's constant.

To obtain the spring's constant, we know that Hooke's law states that the force made by the spring is :

\vec{F} = - k \Delta \vec{x}

as we need 9.12 N to compress 4.60 cm, this means:

k = \frac{9.12 \ N}{4.6 \ 10^{-2} \ m}

k = 198.26 \ \frac{ N}{m}

So, the elastic energy of the compressed spring is:

E_{ep} = \frac{1}{2} 198.26 \ \frac{ N}{m} (4.6 \ 10^{-2} \ m)^2

E_{ep} = 0.209759 \ Joules

And when the spring is relaxed, the elastic potential energy will be zero.

<h3>Gravitational potential energy</h3>

To see how much gravitational potential energy will the pellet win, we can use

\Delta E_{gp} = m g \Delta h

where m is the mass of the pellet, g is the acceleration due to gravity and \Delta h is the difference in height.

Taking all this together, the gravitational potential energy when the spring is relaxed will be:

\Delta E_{gp} = 4.97 \ 10^{-3} kg \ 9.8 \frac{m}{s^2} 4.6 \ 10^{-2} m

\Delta E_{gp} = 0.00224 \ Joules

<h3>Kinetic Energy</h3>

We know that the kinetic energy for a mass m moving at speed v is:

E_k = \frac{1}{2} m v^2

so, for the pellet will be

E_k = \frac{1}{2} \ 4.97 \ 10^{-3} kg \ v^2

<h3>All together</h3>

By conservation of energy, we know:

E_{ep} = \Delta E_{gp} + E_k

0.209759 \ Joules = 0.00224 \ Joules + \frac{1}{2} \ 4.97 \ 10^{-3} kg \ v^2

So

\frac{1}{2} \ 4.97 \ 10^{-3} kg \ v^2  = 0.209759 \ Joules - 0.00224 \ Joules

\frac{1}{2} \ 4.97 \ 10^{-3} kg \ v^2  = 0.207519 \ Joules

v  = \sqrt{ \frac{ 0.207519 \ Joules}{ \frac{1}{2} \ 4.97 \ 10^{-3} kg } }

v  = 2.8898 \frac{m}{s}

7 0
3 years ago
Please help <br> Convert the following distance v time graph velocity graph
Reil [10]

Explanation:

for v vs t graph for t=9 to 11,v=15kmph

similarly v2=0,v3=60kmph&v4= -40kmph

5 0
2 years ago
Other questions:
  • A brave child decides to grab onto an already spinning merry‑go‑round. The child is initially at rest and has a mass of 34.5 kg.
    13·1 answer
  • A current of 0.5A flows in a circuit. Determine the quantity of charge that crosses a point in 4 minutes
    13·1 answer
  • The process of generating an electric current by moving an electrical conductor through a magnetic field is called
    13·1 answer
  • Consider an electron that is 10−10 m from an alpha particle
    6·1 answer
  • What are two uses of ethanol?
    12·1 answer
  • The speed of light is 3.0 x 108 m/s. How far does light travel in 2.4 minutes? Identify all variables, write a formula, show all
    13·1 answer
  • What are geothermal heat pumps used for?
    5·1 answer
  • What are the two ways to determine the negative leg of an LED?
    15·1 answer
  • The force of air particles over an area is?
    11·2 answers
  • A block with a mass of 1kg moving at a velocity of 3m/s collides and sticks to a block of mass of 4kg initially at rest. What is
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!