Distance is the total length covered = 2m + 3m = 5m
Displacement is his distance from original position.
Displacement = 2m + (-3)m. Representing the 3m walked back as -3.
Displacement = 2m - 3m = -1m.
So his displacement is 1m behind his original starting point.
<u>Answer:</u> The correct answer is Option b.
<u>Explanation:</u>
Young's Modulus is defined as the ratio of stress acting on a substance to the amount of strain produced.
Stress is defined as force per unit area and strain is defined as proportional deformation in a material.
The equation representing Young's Modulus is:

where,
Y = Young's Modulus
F = force exerted by the weight
l = length of wire
A = area of cross section
= change in length
Hence, the correct answer is Option b.
Answer:
The speed of the car, v = 19.997 m/s
Explanation:
Given,
The centripetal acceleration of the car, a = 13.33 m/s²
The radius of the curve, r = 30 m
The centripetal force acting on the car is given by the formula
F = mv²/r
Where v²/r is the acceleration component of the force
a = v²/r
Substituting the values in the above equation
13.33 = v²/30
v² = 13.33 x 30
v² = 399.9
v = 19.997 m/s
Hence, the speed of the car, v = 19.997 m/s
The concept required to solve this problem is the optical relationship that exists between the apparent depth and actual or actual depth. This is mathematically expressed under the equations.

Where,
Depth of glass
Refraction index of water
Refraction index of glass
Refraction index of air
Depth of water
I enclose a diagram for a better understanding of the problem, in this way we can determine that the apparent depth in the water of the logo would be subject to



Therefore the distance below the upper surface of the water that appears to be the logo is 4.041cm
A because it's the smaller the thicker you just can't have 0 gage