Answer:
The velocity of the other fragment immediately following the explosion is v .
Explanation:
Given :
Mass of original shell , m .
Velocity of shell , + v .
Now , the particle explodes into two half parts , i.e
.
Since , no eternal force is applied in the particle .
Therefore , its momentum will be conserved .
So , Final momentum = Initial momentum

The velocity of the other fragment immediately following the explosion is v .
Answer:
The acceleration of the object decreases I think
Explanation:

Strength: able to detect planets in a wide range of orbits, as long as orbits aren't face on
Limitations: yield only planet's mass and orbital properties
Answer:
the force will increase by a factor 2.25
Explanation:
The gravitational force between the two stars is given by:

where
G is the gravitational constant
m1, m2 are the masses of the two stars
r is the distance between the stars
If the distance is decreased by one-third, it means that the new distance is 2/3 of the previous distance

So the new force will be

So, the force will be 2.25 times the previous value.
We don't know anything about the amount of distance it travels, but that's okay. The only equation we need here is
velocity(final) = velocity(initial) + acceleration * time
vf = vi + (a * t)
The ball is dropped from rest, so vi = 0 m/s.
We want it so that the ball hits the ground with a final velocity of 60 m/s, so vf = 60 m/s.
We are given the acceleration due to gravity, a = 9.8 m/s^2.
We are solving for the time, t = ?.
Now we just plug in the values.
vf = vi + (a * t)
60 m/s = 0 m/s + (9.8 m/s^2)*(t)
60 = 9.8t
60 / 9.8 = t
t = 6.122 s
Hopefully this is the right answer.