The object is at rest. This is because time is going by and there’s no distance being added
Answer:
yes, it is possible
Explanation:
To convert milliliters to liters, we divide by 1000.
To convert milliliters to grams, we multiply the volume (in ml) by the density (in g).
Answer: "One object speeds up before it slows to a stop
"
(the top one)
Explanation:
Ok, first a little recall on how to read this type of graph.
If the points are far apart, the object is moving fast.
If the points are close together, the object is moving slow.
If the distance between the points changes then the velocity of the object changes, which means that the object is accelerated.
If we have a lot of points clustered in one location, then the object is not moving.
We can see:
The top object starts slow, then it increments the speed, then it slows down again, and then it comes to stop.
The bottom object starts fast, and it slows down.
then:
"One object speeds up before it slows to a stop
"
This describes the motion of the top object, this is the only correct option that describes one of the graphs.
Answer:
Stress is the force applied to an object. In geology, stress is the force per unit area that is placed on a rock. Four types of stresses act on materials.
A deeply buried rock is pushed down by the weight of all the material above it. Since the rock cannot move, it cannot deform. This is called confining stress.
Compression squeezes rocks together, causing rocks to fold or fracture (break) (Figure below). Compression is the most common stress at convergent plate boundaries.
Explanation:
Answer:
Tension in the cable is T = 16653.32 N
Explanation:
Give data:
Cross section Area A = 1.3 m^2
Drag coefficient CD = 1.2
Velocity V = 4.3 m/s
Angle made by cable with horizontal =30 degree
Density 
Drag force FD is given as


Drag force = 14422.2 N acting opposite to the motion
As cable made angle of 30 degree with horizontal thus horizontal component is take into action to calculate drag force
TCos30 = F_D


T = 16653.32 N