Answer:
32 seconds
Explanation:
m1 = 80 kg
m2 = 10 kg
v2 = 5m/s
According to the property of conservation of momentum, assuming that both you and the bag are stationary before the safety rope comes lose:

Since the space station is 20 meters away, the time taken to reach it is given by:

It takes you 32 seconds to reach the station.
Answer:
The force exerted by the rope is FT = 225.06 [N]
Explanation:
In order to solve this problem we must use a static analysis, since Globe does not move. For a better understanding in solving this problem, a free body diagram with the forces acting on the globe is attached.
The buoyant force acts upward as it causes the balloon to tend to float, the weight of the balloon tends to lower the balloon and the downward tension force does not allow the balloon to float
The buoyant force is defined by the following equation:
FB = Ro*V*g
where:
FB = Buoyant force [N]
Ro = density of the air = 1.3 [kg/m^3]
V = volume of the balloon = 20 [m^3]
g = gravity acceleration = 9.81 [m/s^2]
FB = 1.3*20*9.81 = 255.06 [N]
Now we do a sum of forces equal to zero in the y-axis
FB - 30 - FT = 0
255.06 -30 = FT
FT = 225.06 [N]
A
Answer:
Speed of water in the 0.5cm diameter will be faster because it has a smaller area
Since area x radius ² so if radius is reduced by 0.5 speed is increased by 4times in the 0.5 diameter pipe
Wire gauge is the measurement for diameter wires
Answer:
2 min 40 s.
Explanation:
Distance = 800 ft
Speed (walking speed) = 300 ft/min
Speed = distance/time
Time, t = 800/300
= 8/3
= 2 min 40 s.