Answer:
a) = 0.704%
b) = 1.30%
c) = 2.60%
Explanation:
Given that:
= 
For Part A; where Concentration of A = 0.270 M
Percentage Ionization(∝) 



percentage% (∝) = 
= 0.704%
For Part B; where Concentration of B =
M



percentage% (∝) = 0.0130 × 100%
= 1.30%
For Part C; where Concentration of C= 



percentage% (∝) = 0.02608 × 100%
= 2.60%
Answer:
The mass percent of potassium is 39%
Option C is correct
Explanation:
Step 1: Data given
Atomic mass of K = 39.10 g/mol
Atomic mass of H = 1.01 g/mol
Atomic mass of C = 12.01 g/mol
Atomic mass of O = 16.0 g/mol
Step 2: Calculate molar mass of KHCO3
Molar mass KHCO3 = 39.10 + 12.01 + 1.01 + 3*16.0
Molar mass KHCO3 = 100.12 g/mol
Step 3: Calculate mass percent of potassium (K)
%K = (atomic mass of K / molar mass of KHCO3) * 100%
%K = (39.10 / 100.12) * 100%
%K = 39.05 %
The mass percent of potassium is 39%
Option C is correct
C a giraffe that eats the leaves off trees
Here, the three different notation of the p-orbital in different sub-level have to generate
The value of azimuthal quantum number (l) for -p orbital is 1. We know that the magnetic quantum number
depends upon the value of l, which are -l to +l.
Thus for p-orbital the possible magnetic quantum numbers are- -1, 0, +1. So there will be three orbitals for p orbitals, which are designated as
,
and
in space.
The three p-orbital can be distinguish by the quantum numbers as-
For 2p orbitals (principal quantum number is 2)
1) n = 2, l = 1, m = -1
2) n = 2, l = 1, m = 0
3) n = 2, l = 1, m = +1
Thus the notation of different p-orbitals in the sub level are determined.