Answer:
(70 x 2 + 16 x 3) x 29/70 x 2 = 38,9428571 g.
Explanation:
Molar mass :
Li₂S = <span>45.947 g/mol
AlCl</span>₃ = <span>133.34 g/mol
</span><span>3 Li</span>₂<span>S + 2 AlCl</span>₃<span> = 6 LiCl + Al</span>₂S₃
3 * 45.947 g Li₂S ----------> 2 * <span>133.34 g AlCl</span>₃
1.084 g Li₂S ----------------> ?
Mass Li₂S = 1.084 * 2 * 133.34 / 3 * 45.947
Mass Li₂S = 289.08112 / 137.841
Mass Li₂S = 2.0972 g
hope this helps!
Given that <span>sample a has a higher melting point than sample
b. Therefore, sample a is a longer chain of a </span><span>fatlike solid substance. It could also be that the bonds present in sample a is much stronger which will require more energy to break. Hope this answers the question.</span>
3 L will be the final volume for the gas as per Charle's law.
Answer:
Explanation:
The kinetic theory of gases has two significant law which forms the backdrop of motion of gases. They are Charle's law and Boyle's law. As per Charle's law, the volume of any gas molecule at constant pressure is directly proportional to the temperature of the molecule.
V∝ T
Since, here two volumes are given and at two different temperatures with constant pressure. Then as per Charle's law, the relation between the volumes of air at different temperature will be

So in this case, V1 = 6 L and T1 = 80° C. Similarly, T2 = 40° C. So we have to determine the V2.


So, 3 L will be the final volume for the gas as per Charle's law.
The period of any wave is one second. the measure of the wave, in this case 440 Hz, is how many wavelengths per second.