Answer: There is a couple different ways to determine if a bond is ionic or covalent. By definition, an ionic bond is between a metal and a nonmetal, and a covalent bond is between 2 nonmetals. So you usually just look at the periodic table and determine whether your compound is made of a metal/nonmetal or is just 2 nonmetals.
Clearly, moving the object closer<span> to the </span>lens<span> makes the image become both larger and further away. As you </span>move<span> the </span>object closer<span> and </span>closer<span> to the focal point, the image will become further and further away. ... As expected the image </span>moves<span> further away and becomes much bigger than the </span>object<span>.
</span>
For example, copper is used for electrical<span> wiring because it is a </span>good conductor of electricity<span>. </span>Metal<span> particles are held together by strong metallic bonds, which is why they have high melting and boiling points. The free electrons in </span>metals<span> can move through the </span>metal<span>, allowing </span>metals<span> to conduct </span>electricity<span>.</span>
Answer:
-3.82ºC is the freezing point of solution
Explanation:
We work with the Freezing point depression to solve the problem
ΔT = m . Kf . i
ΔT = Freezing point of pure solvent - freezing point of solution
Let's find out m, molality (moles of solute in 1kg of solvent)
15 g / 58.45 g/mol = 0.257 moles of NaCl
NaCl(s) → Na⁺ (aq) + Cl⁻(aq)
i = 2 (Van't Hoff factor, numbers of ions dissolved)
m = mol /kg → 0.257 mol / 0.250kg = 1.03 m
Kf = Cryoscopic constant → 1.86 ºC/m (pure, for water)
0ºC - Tºf = 1.03m . 1.86ºC/m . 2
Tºf = -3.82ºC