Answer:
P(N) = 38.48 mmHg
Explanation:
Given data:
Partial pressure of He = 15.22 mmHg
Partial pressure of O = 35.21 mmHg
Partial pressure of N = ?
Total pressure = 88.91 mmHg
Solution:
According to Dalton law of partial pressure,
The total pressure inside container is equal to the sum of partial pressures of individual gases present in container.
Mathematical expression:
P(total) = P₁ + P₂ + P₃+ ............+Pₙ
Now we will solve this problem by using this law.
P(total) = P(He) + P(O) + P(N)
88.91 mmHg = 15.22 mmHg + 35.21 mmHg + P(N)
88.91 mmHg = 50.43 mmHg + P(N)
P(N) = 88.91 mmHg - 50.43 mmHg
P(N) = 38.48 mmHg
Answer:
Having a specific set of possible values
Answer:
a pencil being sharpened
freezing water
boiling water
Explanation:
a physical change doesn't change the chemical structure of an object. That is why the other 2 are wrong
Answer:
8.354 nanometers
Explanation:
To treat a diffusive process in function of time and distance we need to solve 2nd Ficks Law. This a partial differential equation, with certain condition the solution looks like this:

Where Cs is the concentration in the surface of the solid
Cx is the concentration at certain deep X
Co is the initial concentration of solute in the solid
and erf is the error function
Then we solve right side,

And we need to look up the inverse error function of 0.001964 resulting in: 0.00174055
Then we solve for x:

HA ⇄ H⁺ + A⁻
so:
![\frac{[H^+][A^-]}{[HA]} = 1.5 x 10^{-5}](https://tex.z-dn.net/?f=%20%5Cfrac%7B%5BH%5E%2B%5D%5BA%5E-%5D%7D%7B%5BHA%5D%7D%20%3D%201.5%20x%2010%5E%7B-5%7D%20%20)
and now:

= 1.5 x 10⁻⁵
x is considered very small compared to 0.15
x² = 2.25 x 10⁻⁶
x = 1.5 x 10⁻³
So [H⁺] = 1.5 x 10⁻³
pH = - log [H⁺] = - log (1.5 x 10⁻³) = 2.83