Answer:
t=4.86s
Explanation:
To find the wavelength you use the following formula:

v: speed of sound = 343m/s
f: frequency = 400Hz
λ: wavelength of the sound
By doing λ the subject of the formula and replacing the values of f and v you obtain:

Now, to calculate the time that sound takes to reach the last row you use:

t: time
d: distance to the last row = 1947m

hence, the time is 4.86s
v₀ = initial speed of the object = 8 meter/second
v = final speed of the object = 16 meter/second
t = time taken to increase the speed = 10 seconds
d = distance traveled by the object in the given time duration = ?
using the kinematics equation
d = (v + v₀) t/2
inserting the above values in the above equation
d = (16 + 8) (10)/2
d = 120 meter
Answer:
The actual elevation angle is 12.87 degrees
Explanation:
In the attachment you can clearly see the situation. The angle of elevation as seen for the scuba diver is shown in magenta, we conclude that
.
Using Snell's Law we can write:

,
Let's approximate the index of refraction of the air (medium 1 in the picture) to 1.
We thus have:

. Calling
the actual angle of elevation, we get from the picture that