Answer:
The volume of cupboard is 2.0043 m³.
Explanation:
Given data:
width of cupboard = 1.31 m
length of cupboard = 0.9 m
height of cupboard = 1.70 m
Volume = ?
Solution:
Volume = length × width × height
Volume = 0.9 m × 1.31 m × 1.70 m
Volume = 2.0043 m³
The volume of cupboard is 2.0043 m³.
Answer:
The covalent bond in Cl₂ is break and combine with sodium to form NaCl through ionic bond.
Explanation:
Chemical equation:
Na + Cl₂ → NaCl
Balanced chemical equation:
2Na + Cl₂ → 2NaCl
The given reaction indicate the formation of sodium chloride.
Sodium chloride is an ionic compound. It is formed by the reaction of chlorine and sodium. The type of bond in Cl₂ is covalent. Both chlorine atoms are tightly held together through sharing of electrons. When sodium chloride is formed the covalent between the chlorine atoms are break and it react with sodium . The chlorine toms thus gain the one electron from the sodium atom and became negative ion while sodium by losing its one valance electrons became positive ions. The strong electrostatic forces are develop between them and ionic bond is formed.
First we have to find moles of C:
Molar mass of CO2:
12*1+16*2 = 44g/mol
(18.8 g CO2) / (44.00964 g CO2/mol) x (1 mol C/ 1 mol CO2) =0.427 mol C
Molar mass of H2O:
2*1+16 = 18g/mol
As there is 2 moles of H in H2O,
So,
<span>(6.75 g H2O) / (18.01532 g H2O/mol) x (2 mol H / 1 mol H2O) = 0.74mol H </span>
<span>Divide both number of moles by the smaller number of moles: </span>
<span>As Smaaler no moles is 0.427:
So,
Dividing both number os moles by 0.427 :
(0.427 mol C) / 0.427 = 1.000 </span>
<span>(0.74 mol H) / 0.427 = 1.733 </span>
<span>To achieve integer coefficients, multiply by 2, then round to the nearest whole numbers to find the empirical formula:
C = 1 * 2 = 2
H = 1.733 * 2 =3.466
So , the empirical formula is C2H3</span>
Answer:
Carbon, Hydrogen, Oxygen, Nitrogen, and Sulfur.
(Those are all the ones I know)
(a) Pushing the spring down gives it stored mechanical energy that turns into motion
Explanation:
Pushing on the spring causes the mechanical energy, of pushing on the spring, to be stored in the spring through potential elastic energy. Due to the elasticity of the spring, when the spring is released and resumes its initial shape the stored energy is released and can be used to do work such as motion.