Answer:
Enzymes may require a nonprotein cofactor or ion for catalysis to take speed up more appreciably than if the enzymes act alone;
Enzymes increase the rate of chemical reaction by lowering activation energy barriers.
Explanation:
Some enzymes need a cofactor to act, it is attached to the enzyme and can be nonprotein such as a metal ion. The enzyme function depends on the physical properties of the environmental, especially temperature and pH, each enzyme has a great point of pH and temperature where it has a maximum activity.
If the three-dimensional function of an enzyme is altered, it loses it specified and may not catalyze the reaction, because the structure of the enzyme is responsable for its specified. The catalyst occurs because the enzyme lows the activation energy barriers and this increases the rate of the reaction.
Answer:
a) Na
c) Na
b) Sr
d) Ca
Explanation:
As we move from left to right across the periodic table the number of valance electrons in an atom increase. The atomic size tend to decrease in same period of periodic table because the electrons are added with in the same shell. When the electron are added, at the same time protons are also added in the nucleus. The positive charge is going to increase and this charge is greater in effect than the charge of electrons. This effect lead to the greater nuclear attraction. The electrons are pull towards the nucleus and valance shell get closer to the nucleus. As a result of this greater nuclear attraction atomic radius decreases and ionization energy increases because it is very difficult to remove the electron from atom and more energy is required.
As we move down the group atomic radii increased with increase of atomic number. The addition of electron in next level cause the atomic radii to increased. The hold of nucleus on valance shell become weaker because of shielding of electrons thus size of atom increased.
As the size of atom increases the ionization energy from top to bottom also decreases because it becomes easier to remove the electron because of less nuclear attraction and as more electrons are added the outer electrons becomes more shielded and away from nucleus.
Answer:
The CO2 Extinguisher Cannisters contain carbon dioxide in liquid form, and when the extinguisher is let off the liquid is released into the air neutralising the oxygen that the fire is feeding on, disabling the fires ability to spread.
Answer:
None of the given options
Explanation:
Let's go case by case:
A. No matter the volume, the concentration of Fe(NO₃)₃ (and thus of [Fe³⁺] as well) is 0.050 M.
B. We can calculate the moles of Fe₂(SO₄)₃:
- 0.020 M * 0.80 L = 0.016 mol Fe₂(SO₄)₃
Given that there are two Fe⁺³ moles per Fe₂(SO₄)₃ mol, in the solution we have 0.032 moles of Fe⁺³. With that information in mind we <u>can calculate [Fe⁺³]</u>:
- 0.032 mol Fe⁺³ / 0.80 L = 0.040 M
C. Analog to case A., the molar concentration of Fe⁺³ is 0.040 M.
D. Similar to cases A and C., [Fe⁺³] = 0.010 M.
Thus none of the given options would have [Fe⁺³] = 0.020 M.
Answer:

Explanation:
Hydrogen bonding:-
Hydrogen bonding is a special type of the dipole-dipole interaction and it occurs between hydrogen atom that is bonded to highly electronegative atom which is either fluorine, oxygen or nitrogen atom.
Partially positive end of the hydrogen atom is attracted to partially negative end of these atoms which is present in another molecule. It is strong force of attraction between the molecules.
Thus, hydrogen must be linked to electronegative atom which is oxygen, fluorine and nitrogen which is in
and thus, it will shown hydrogen bonding.