Answer:
P= 454.11 N
Explanation:
Since P is the only horizontal force acting on the system, it can be defined as the product of the acceleration by the total mass of the system (both cubes).

The friction force between both cubes (F) is defined as the normal force acting on the smaller cube multiplied by the coefficient of static friction. Since both cubes are subject to the same acceleration:

In order for the small cube to not slide down, the friction force must equal the weight of the small cube:

The smallest magnitude that P can have in order to keep the small cube from sliding downward is 454.11 N
Answer:
Explanation:
Given
Volume of paint is 
Area of cover 
Suppose paint to be a rectangular box with thickness t and volume V
therefore we can write as




Answer: 56.72 ft/s
Explanation:
Ok, initially we only have potential energy, that is equal to:
U =m*g*h
where g is the gravitational acceleration, m the mass and h the height.
h = 50ft and g = 32.17 ft/s^2
when the watermelon is near the ground, all the potential energy is transformed into kinetic energy, and the kinetic energy can be written as:
K = (1/2)*m*v^2
where v is the velocity.
Then we have:
K = U
m*g*h = (m/2)*v^2
we solve it for v.
v = √(2g*h) = √(2*32.17*50) ft/s = 56.72 ft/s
Answer:
(a) The constants required describing the rod's density are B=2.6 and C=1.325.
(b) The mass of the road can be found using 
Explanation:
(a) Since the density variation is linear and the coordinate x begins at the low-density end of the rod, we have a density given by

recalling that the coordinate x is measured in centimeters.
(b) The mass of the rod can be found by having into account the density, which is x-dependent, and the volume differential for the rod:
,
hence, the mass of the rod is 126.6 g.
D. Reflects
The object absorbs the rest of the color spectrum