Answer:
False I'm pretty sure sorry If its wrong
Answer:
1.96 kg/s.
Explanation:
So, we are given the following data or parameters or information which we are going to use in solving this question effectively and these data are;
=> Superheated water vapor at a pressure = 20 MPa,
=> temperature = 500°C,
=> " flow rate of 10 kg/s is to be brought to a saturated vapor state at 10 MPa in an open feedwater heater."
=> "mixing this stream with a stream of liquid water at 20°C and 10 MPa."
K1 = 3241.18, k2 = 93.28 and 2725.47.
Therefore, m1 + m2= m3.
10(3241.18) + m2 (93.28) = (10 + m3) 2725.47.
=> 1.96 kg/s.
Answer:
a.) -147V
b.) -120V
c.) 51V
Explanation:
a.) Equation for potential difference is the integral of the electrical field from a to b for the voltage V_ba = V(b)-V(a).
b.) The problem becomes easier to solve if you draw out the circuit. Since potential at Q is 0, then Q is at ground. So voltage across V_MQ is the same as potential at V_M.
c.) Same process as part b. Draw out the circuit and you'll see that the potential a point V_N is the same as the voltage across V_NP added with the 2V from the other box.
Honestly, these things take practice to get used to. It's really hard to explain this.
Answer:
Explanation:
From the given question:
Using the distortion energy theory to determine the factors of safety FOS can be expressed by the relation:

where; syt = strength in tension and compression = 350 MPa
The maximum shear stress theory can be expressed as:

where;

a. Using distortion - energy theory formula:



FOS = 2.183
USing the maximum-shear stress theory;




FOS = 1.977
b. σx = 110 MPa, σy = 100 MPa
Using distortion - energy theory formula:




FOS =3.322
USing the maximum-shear stress theory;



FOS = 350/2×25
FOS = 350/50
FOS = 70
c. σx = 90 MPa, σy = 20 MPa, τxy =−20 MPa
Using distortion- energy theory formula:



FOS = 350/88.88
FOS = 3.939
USing the maximum-shear stress theory;





FOS = 4.341