1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
RideAnS [48]
3 years ago
15

An automotive fuel cell consumes fuel at a rate of 28m3/h and delivers 80kW of power to the wheels. If the hydrogen fuel has a h

eating value of 141,790 kJ/kg and a density of 0.0899 kg/m3, determine the efficiency of this fuel cell.
Engineering
1 answer:
EastWind [94]3 years ago
3 0

Answer:

The efficiency of this fuel cell is 80.69 percent.

Explanation:

From Physics we define the efficiency of the automotive fuel cell (\eta), dimensionless, as:

\eta = \frac{\dot W_{out}}{\dot W_{in}} (Eq. 1)

Where:

\dot W_{in} - Maximum power possible from hydrogen flow, measured in kilowatts.

\dot W_{out} - Output power of the automotive fuel cell, measured in kilowatts.

The maximum power possible from hydrogen flow is:

\dot W_{in} = \dot V\cdot \rho \cdot L_{c} (Eq. 2)

Where:

\dot V - Volume flow rate, measured in cubic meters per second.

\rho - Density of hydrogen, measured in kilograms per cubic meter.

L_{c} - Heating value of hydrogen, measured in kilojoules per kilogram.

If we know that \dot V = \frac{28}{3600}\,\frac{m^{3}}{s}, \rho = 0.0899\,\frac{kg}{m^{3}}, L_{c} = 141790\,\frac{kJ}{kg} and \dot W_{out} = 80\,kW, then the efficiency of this fuel cell is:

(Eq. 1)

\dot W_{in} = \left(\frac{28}{3600}\,\frac{m^{3}}{s}\right)\cdot \left(0.0899\,\frac{kg}{m^{3}} \right)\cdot \left(141790\,\frac{kJ}{kg} \right)

\dot W_{in} = 99.143\,kW

(Eq. 2)

\eta = \frac{80\,kW}{99.143\,kW}

\eta = 0.807

The efficiency of this fuel cell is 80.69 percent.

You might be interested in
Water is the working fluid in an ideal Rankine cycle. Saturated vapor enters the turbine at 12 MPa, and the condenser pressure i
Brilliant_brown [7]

Answer:

\dot Q_{in} = 372.239\,MW

Explanation:

The water enters to the pump as saturated liquid and equation is modelled after the First Law of Thermodynamics:

w_{in} + h_{in}- h_{out} = 0

h_{out} = w_{in}+h_{in}

h_{out} = 12\,\frac{kJ}{kg} + 191.81\,\frac{kJ}{kg}

h_{out} = 203.81\,\frac{kJ}{kg}

The boiler heats the water to the state of saturated vapor, whose specific enthalpy is:

h_{out} = 2685.4\,\frac{kJ}{kg}

The rate of heat transfer in the boiler is:

\dot Q_{in} = \left(150\,\frac{kg}{s}\right)\cdot \left(2685.4\,\frac{kJ}{kg}-203.81\,\frac{kJ}{kg} \right)\cdot \left(\frac{1\,MW}{1000\,kW} \right)

\dot Q_{in} = 372.239\,MW

3 0
3 years ago
Read 2 more answers
A program is seeded with 30 faults. During testing, 21 faults are detected, 15 of which are seeded faults and 6 of which are ind
Vesna [10]

Answer:

Estimated number of indigenous faults remaining undetected is 6

Explanation:

The maximum likelihood estimate of indigenous faults is given by,

N_F=n_F\times \frac{N_S}{n_S} here,

n_F = the number of unseeded faults = 6

N_S = number of seeded faults = 30

n_s = number of seeded faults found = 15

So NF will be calculated as,

N_F=6\times \frac{30}{15}=12

And the estimate of faults remaining is  N_F-n_F = 12 - 6 = 6

8 0
3 years ago
La extensión de un resumen debe estar en un rango de _________ del texto inicial. a)25 a 35 % b)10 a 20 % c)15 a 20 % d)20 a 25
mestny [16]

Answer:

b)

Explanation:

because it is correct

3 0
3 years ago
A well-insulated rigid vessel contains 3 kg of saturated liquid water at 40oC. The vessel also contains an electrical resistor t
user100 [1]

Answer:

The final temperature is 111.66°C

Explanation:

The given conditions :-

i) Well insulated means no heat loss.

ii) Rigid vessels means volume remains same.

iii) Initial temperature ( T₁ ) = 40°C. = 273 + 40 = 313 K

iv ) Mass of water in vessel = 3 kg.

v) current drawn by resistor ( i ) = 10 ampere.

vi) Voltage applied ( V ) = 50 volts.

vii) The time for which resistor operating ( t ) = 30 minute = 30 * 60 = 1800 seconds.

Now we have to calculate heat developed by resistor in vessel.

Q = V * i * t  = 50 * 10 * 1800 = 900,000 J = 900 KJ.

Since it is a rigid container so the work done is zero.

Q = du    ( du - change in internal energy)

Q = m * C * dT      ( C = 4.186 KJ/KgK )

Q = 3 * 4.186 * (T₂ - T₁ )

900 = 12.558 * ( T₂ - 313 )

T₂ - 313 = 71.6674

T₂ = 384.6674 K

T = 384.6674 - 273 = 111.66°C

So the final temperature is 111.66°C.

3 0
3 years ago
Who is responsible for keeping your facility in compliance <br>​
inessss [21]
<h2>Answer:</h2><h2>The safety manager is usually the person responsible for ensuring whether the company is in compliance with the OSHA employer requirements . These type of requirements include; Fatal accidents that result in the hospitalisation of three or more employees,must be reported to the OSHA nearest office within 8 hours.</h2>

4 0
3 years ago
Other questions:
  • A rectangular concrete beam has dimensions b=16 in. and h=30 in. The location of the Gr. 60 reinforcing bars, which are placed a
    15·1 answer
  • The maximum stress that a bar will withstand before failing is called • Rapture Strength • Yield Strength • Tensile Strength • B
    5·1 answer
  • A concentrated load P is applied to the upper end of a 1.47-m-long pipe. The outside diameter of the pipe is D = 112 mm and the
    5·1 answer
  • What is the purpose of a hot water heater?​
    8·1 answer
  • What is it that makes a battery rechargeable? How is it different from a regular battery?
    14·2 answers
  • GMA MIG weiding is a
    7·1 answer
  • How do we infer that there is
    9·1 answer
  • How old are legos? Who created them? Why did they create them?
    11·1 answer
  • Calculate the acceleration of a 2000kg single engine airlane just before take off when the thrust of the engine is 500n?
    5·1 answer
  • A plant has ten machines and currently operates two 8-hr shift per day, 5 days per week, 50 weeks per year. the ten machines pro
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!