Answer:
There were a lot of great engineering achievements presented in the 20th century. To name some, we have the electricity, airplane, radio and television, water supply and distribution, computers, television, X-ray imaging, nuclear technologies, and of course the Internet.
(a) The number of vacancies per cubic centimeter is 1.157 X 10²⁰
(b) ρ = n X (AM) / v X Nₐ
<u>Explanation:</u>
<u />
Given-
Lattice parameter of Li = 3.5089 X 10⁻⁸ cm
1 vacancy per 200 unit cells
Vacancy per cell = 1/200
(a)
Number of vacancies per cubic cm = ?
Vacancies/cm³ = vacancy per cell / (lattice parameter)³
Vacancies/cm³ = 1 / 200 X (3.5089 X 10⁻⁸cm)³
Vacancies/cm³ = 1.157 X 10²⁰
Therefore, the number of vacancies per cubic centimeter is 1.157 X 10²⁰
(b)
Density is represented by ρ
ρ = n X (AM) / v X Nₐ
where,
Nₐ = Avogadro number
AM = atomic mass
n = number of atoms
v = volume of unit cell
Answer:
Heat gain of 142 kJ
Explanation:
We can see that job done by compressing the He gas is negative, it means that the sign convention we are going to use is negative for all the work done by the gas and positive for all the job done to the gas. With that being said, the first law of thermodynamics equation will help us to solve this problem.
Δ
⇒
Δ![U -W](https://tex.z-dn.net/?f=U%20-W)
![Q = 79 - (-63) = 142 kJ](https://tex.z-dn.net/?f=Q%20%3D%2079%20-%20%28-63%29%20%3D%20142%20kJ)
Therefore, the gas gained heat by an amount of 142 kJ.