The alpha particle is the helium nucleus.
The mass of helium nucleus (⁴₂He) is 4u.
The mass of radioactive atom decreases by 4u. Look at the reaction below:
²²³₈₈Ra ---> ⁴₂He + ²¹⁹₈₆Rn
Answer:
1) The value of Kc:
C. remains the same.
2) The value of Qc:
A. is greater than Kc.
3) The reaction must:
B. run in the reverse direction to restablish equilibrium.
4) The concentration of N2 will:
B. decrease.
Explanation:
Hello,
In this case, by means of the Le Chatelier's principle which is based on the shift a chemical reaction could have under some modifications, we have:
1) The value of Kc:
C. remains the same, since it just depend the reaction's thermodynamics as it is computed via:
![ln(K)=\frac{\Delta _RG}{RT}](https://tex.z-dn.net/?f=ln%28K%29%3D%5Cfrac%7B%5CDelta%20_RG%7D%7BRT%7D)
2) The value of Qc:
A. is greater than Kc, since the reaction quotient is:
![Qc=\frac{[N_2][H_2]^3}{[NH_3]^2}](https://tex.z-dn.net/?f=Qc%3D%5Cfrac%7B%5BN_2%5D%5BH_2%5D%5E3%7D%7B%5BNH_3%5D%5E2%7D)
Thus, the lower the concentration of ammonia, the higher Qc, making Qc>Kc.
3) The reaction must:
B. run in the reverse direction to restablish equilibrium, since ammonia was withdrawn and should be regenerated to reach the equilibrium.
4) The concentration of N2 will:
B. decrease, since less reactant is forming the products.
Best regards.
3 these are 5,6&7 are the significant