Happy birthday girl i’m love you too bye mommy love you mommy bye bye merry christmas
Answer : The energy released by an electron in a mercury atom to produce a photon of this light must be, 
Explanation : Given,
Wavelength = 
conversion used : 
Formula used :

As, 
So, 
where,
= frequency
h = Planck's constant = 
= wavelength = 
c = speed of light = 
Now put all the given values in the above formula, we get:


Therefore, the energy released by an electron in a mercury atom to produce a photon of this light must be, 
Answer:
1. 3.83 L
2. 0.368 mole
Explanation:
1. Determination of the volume
Pressure (P) = 3.21 atm
Temperature (T) = 202 K
Number of mole (n) = 0.741 mole
Gas constant (R) = 0.0821 L.atm/molK
Volume (V) =?
The volume can be obtained by using the ideal gas equation as illustrated below:
PV = nRT
3.21 × V = 0.741 × 0.0821 × 202
3.21 × V = 12.3497283
Divide both side by 3.21
V = 12.2888922 / 3.21
V = 3.83 L
Thus, the volume of the gas is 3.83 L
2. Determination of the number of mole.
Pressure (P) = 2.50 atm
Temperature (T) = 215 K
Volume (V) = 2.60 L
Gas constant (R) = 0.0821 L.atm/molK
Number of mole (n) =?
The number of mole can be obtained by using the ideal gas equation as illustrated below:
PV = nRT
2.50 × 2.60 = n × 0.0821 × 215
6.5 = n × 17.6515
Divide both side by 17.6515
n = 6.5 / 17.6515
n = 0.368 mole
Thus, the number of mole of the gas is 0.368 mole.
It’s due to the average number of collisions of gas molecules with the container walls per unit time. As such, pressure depends on the amount of gas (in number of molecules), its temperature, and the volume of the container.
Heterogeneous, which means that they are not evenly combined.