To calculate for the volume, we need a relation to relate the number of moles (n), pressure (P), and temperature (T) with volume (V). For simplification, we assume the gas is an ideal gas. So, we use PV=nRT.
PV = nRT where R is the universal gas constant
V = nRT / P
V = 65.5 ( 0.08205 ) (273.15 + 50.30) / 9.15
V = 189.98 L
Think of it this way,
Mix Iron and sulphur in a bowl. How do you separate them? Use a magnet right. Yes.
Now, mix the iron and sulphur together but know, heat them up. Let them cool for a while. After that, use a magnet to separate. You cant. This is because the compound (FeS) now has a different property from its original components.
Apply this theory onto salts.
From the periodic chart the only element between F and Na is Neon. Neon has one more valence electron 8 than fluorine 7, and is one energy level shy of Na.<span>
</span>
Answer:
The answer to your question is below
Explanation:
Data
mass of CaCO₃ = 155 g
mass of HCl = 250 g
mass of CaCl₂ = 142 g
reactants = CaCO₃ + HCl
products = CaCl₂ + CO₂ + H₂O
1.- Balanced chemical reaction
CaCO₃ + 2HCl ⇒ CaCl₂ + CO₂ + H₂O
2.- Limiting reactant
molar mass of CaCO₃ = 40 + 12 + 48 = 100 g
molar mass of HCl = 2[1 + 35.5 ] = 73 g
theoretical proportion CaCO₃ /HCl = 100 / 73 = 1.37
experimental proportion CaCO₃ /HCl = 155 / 250 = 0.62
As the experimental proportion was lower than the theoretical proportion the limiting reactant is CaCO₃
3.-
Calculate the molar mass of CaCl₂
CaCl₂ = 40 + 71 = 111 g
100 g of CaCO₃ ------------------ 111 g of CaCl₂
155 g of CaCO₃ ----------------- x
x = (155 x 111) / 100
x = 17205 / 100
x = 172.05 g of CaCl₂
4.- percent yield
Percent yield = 142 / 172.05 x 100 = 82.5 %
5.- Excess reactant
100 g of CaCO₃ -------------------- 73 g of HCl
155 g of caCO₃ ------------------- x
x = (155 x 73)/100
x = 133.15 g
Mass of HCl = 250 - 133.15
= 136.9 g
Answer:

Explanation:
Using Gay Lusaac's law where there is no change in Volume. The pressure changes directly proportional to absolute T°
P₁/T₁ = P₂/T₂
P₁T₂/T₁
P₂ = 
P₂ = 