1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Orlov [11]
3 years ago
15

A spring with a spring constant of 25.0N/m is stretched 4.50m. What is the force that the spring would apply?​

Physics
1 answer:
alina1380 [7]3 years ago
8 0

Explanation:

from \: hookes \: law : \\ force = k \bold{.}e \\  = 25.0 \times 4.50 \\  = 112.5 \: N

You might be interested in
A body of mass 25kg, moving at 3 ms per second on a rough horizontal floor brought to rest after sliding through a distance of 2
erastova [34]
You have to solve this by using the equations of motion:
u=3
v=0
s=2.5
a=?
v^2=u^2+2as
0=9+5s
Giving a=-1.8m/s^2

Then using the equation:
F=ma
F is the frictional force as there is no other force acting and its negative as its in the opposite direction to the direction of motion.

-F=25(-1.8)
F=45N

Then use the formula:
F=uR
Where u is the coefficient of friction, R is the normal force and F is the frictional force.

45=u(25g)
45=u(25*10)

Therefore, the coefficient of friction is 0.18

Hope that helps




5 0
4 years ago
How does unequal solar heating lead to the Gulf Stream?
adoni [48]
Http://earthguide.ucsd.edu/virtualmuseum/virtualmuseum/OriginofGulfStream.shtml this website might help u find ur answer
8 0
3 years ago
A small balloon is released at a point 150 feet away from an observer, who is on level ground. If the balloon goes straight up a
Elza [17]

Answer:

\dfrac{dz}{dt}=0.65\ ft/s

Explanation:

Given that

x= 150 ft

\dfrac{dy}{dt}= 7\ ft/s

y= 14 ft

From the diagram

z^2=x^2+y^2

When ,x= 150 ft and y= 14 ft

z^2=150^2+14^2

z=\sqrt{150^2+15^2}

z=150.74 ft

z^2=x^2+y^2

By differentiating with respect to time t

2z\dfrac{dz}{dt}= 2x\dfrac{dx}{dt}+2y\dfrac{dy}{dt}

z\dfrac{dz}{dt}= x\dfrac{dx}{dt}+y\dfrac{dy}{dt}

Here x is constant that is why

\dfrac{dx}{dt}=0

z\dfrac{dz}{dt}= y\dfrac{dy}{dt}

Now by putting the values in the above equation we get

150.74\times \dfrac{dz}{dt}=14\times 7

\dfrac{dz}{dt}=\dfrac{14\times 7}{150.74}\ ft/s

\dfrac{dz}{dt}=0.65\ ft/s

Therefore the distance between balloon and observer increasing with 0.65 ft/s.

5 0
3 years ago
A 73-kg Norwegian olympian ski champion is going down a hill sloped at 39 ◦ . The coefficient of kinetic friction between the sk
bazaltina [42]

Answer:

Explanation:

net force on the skier = mg sin 39 - μ mg cos39

mg ( sin39 - μ cos39 )

= 73 x 9.8 ( .629 - .116)

= 367 N

impulse = net force x time = change in momentum .

= 367 x 5 = 1835 kg m /s

velocity of the skier after 5 s = 1835 / 73

= 25.13 m /s

b )

net force becomes zero

mg ( sin39 - μ cos39 ) = 0

μ = tan39

= .81

c )

net force becomes zero , so he will continue to go ahead with constant speed of 25.13 m /s

so he will have speed of 25.13 m /s after 5 s .

5 0
3 years ago
The voltage across the terminals of a 250nF capacitor is푣푣=�50푉푉, 푡푡≤0(푚푚1푒푒−4000푡푡+푚푚2푡푡푒푒−4000푡푡)푉푉, 푡푡 ≥0The initial current
olga2289 [7]

The first part of the question is not complete and it is;

The voltage across the terminals of a 250 nF capacitor is 50 V, A1e^(-4000t) + (A2)te^(-4000t) V, t0, What is the initial energy stored in the capacitor? Express your answer to three significant figures and include the appropriate units. t

Answer:

A) initial energy = 0.3125 mJ

B) A1 = 50 and A2 = 1,800,000

C) Capacitor Current is given by the expression;

I = e^(-4000t)[0.95 - 1800t]

Explanation:

A) In capacitors, Energy stored is given as;

U = (1/2)Cv²

Where C is capacitance and v is voltage.

So initial kinetic energy;

U(0) = (1/2)C(vo)²

From the question, C = 250 nF and v = 50V

So, U(0) = (1/2)(250 x 10^(-9))(50²) = 0.3125 x 10^(-3)J = 0.3125 mJ

B) from the question, we know that;

A1e^(-4000t) + (A2)te^(-4000t)

So, v(0) = A1e^(0) + A2(0)e^(0)

v(0) = 50

Thus;

50 = A1

Now for A2; let's differentiate the equation A1e^(-4000t) + (A2)te^(-4000t) ;

And so;

dv/dt = -4000A1e^(-4000t) + A2[e^(-4000t) - 4000e^(-4000t)

Simplifying this, we obtain;

dv/dt = e^(-4000t)[-4000A1 + A2 - 4000A2]

Current (I) = C(dv/dt)

I = (250 x 10^(-9))e^(-4000t)[-4000A1 + A2 - 4000tA2]

Thus, Initial current (Io) is;

Io = (250 x 10^(-9))[e^(0)[-4000A1 + A2]]

We know that Io = 400mA from the question or 0.4 A

Thus;

0.4 = (250 x 10^(-9))[-4000A1 + A2]

0.4 = 0.001A1 - (250 x 10^(-9)A2)

Substituting the value of A1 = 50V;

0.4 = 0.001(50) - (250 x 10^(-9)A2)

0.4 = 0.05 - (250 x 10^(-9)A2)

Thus, making A2 the subject, we obtain;

(0.4 + 0.05)/(250 x 10^(-9))= A2

A2 = 1,800,000

C) We have derived that ;

I = (250 x 10^(-9))e^(-4000t)[-4000A1 + A2 - 4000tA2]

So putting values of A1 = 50 and A2 = 1,800,000 we obtain;

I = (250 x 10^(-9))e^(-4000t)[(-4000 x 50) + 1,800,000 - 4000(1,800,000)t]

I = e^(-4000t)[0.05 + 0.45 - 1800t]

I = e^(-4000t)[0.95 - 1800t]

5 0
4 years ago
Other questions:
  • Select the choice that best completes the following sentence. Simple machines
    9·2 answers
  • A 2.0 kg block, initially moving at 10.0 m/s, slides 50.0 m across a sheet of ice beforecoming to rest. What is the magnitude of
    9·1 answer
  • A disc initially at rest experiences an angular acceleration of 3.11 rad/s for a time of 15.0 s. What will the angular speed of
    13·1 answer
  • You often hear people, particularly TV announcers, talk about a "high rate of speed." What do you think they mean? According to
    14·1 answer
  • A cement truck of mass 14,000 kg moving 10m/s slams into a wall and comes to a halt in .2s. What is the force of impact on the t
    9·1 answer
  • #38 , what is this answer?
    10·2 answers
  • Can you answer fast plz
    14·1 answer
  • PLEASE HELP WITH THE 6 FOLLOWING SCIENCE QUESTIONS (the topic is circuit symbols and equations):
    5·1 answer
  • A cyclist travels at 15 m/s during a sprint finish. What is this speed in km/h
    15·1 answer
  • How are electromagnetic waves used in a bar-code scanner?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!