Answer:
θ = 21.8º
Explanation:
We can solve this exercise using Newton's conditions for equilibrium, in the attached we can see a diagram of the forces.
The most used coordinate system is an axis parallel to the plane (x axis) and an axis perpendicular to the plane (y axis), let's write Newton's equations on this axes
Y Axis
N-
= 0
N =
X axis
fr - Wₓ = 0 (1)
Let's use trigonometry to find the normal ones
sin θ = Wₓ / W
cos θ =
/ W
Wx = W sin θ
= W cos θ
The friction force has the formula
fr = μ N
fr = μ (W cos θ)
We substitute in 1
μ mg cosθ = mg sin θ
μ cos θ = sin θ
tan θ = μ
θ = tan⁻¹ μ
calculate
θ = tan⁻¹ 0.40
θ = 21.8º
Complete Question
The complete question is shown on the first uploaded image
Answer:
The temperature change is 
Explanation:
From the question we are told that
The velocity field with which the bird is flying is 
The temperature of the room is 
The time considered is t = 10 \ seconds
The distance that the bird flew is x = 1 m
Given that the bird is inside the room then the temperature of the room is equal to the temperature of the bird
Generally the change in the bird temperature with time is mathematically represented as
![\frac{dT}{dt} = -0.4 \frac{dy}{dt} -0.6\frac{dz}{dt} -0.2[2 * (5-x)] [-\frac{dx}{dt} ]](https://tex.z-dn.net/?f=%5Cfrac%7BdT%7D%7Bdt%7D%20%3D%20-0.4%20%5Cfrac%7Bdy%7D%7Bdt%7D%20-0.6%5Cfrac%7Bdz%7D%7Bdt%7D%20-0.2%5B2%20%2A%20%20%285-x%29%5D%20%5B-%5Cfrac%7Bdx%7D%7Bdt%7D%20%5D)
Here the negative sign in
is because of the negative sign that is attached to x in the equation
So
![\frac{dT}{dt} = -0.4v_y -0.6v_z -0.2[2 * (5-x)][ -v_x]](https://tex.z-dn.net/?f=%5Cfrac%7BdT%7D%7Bdt%7D%20%3D%20-0.4v_y%20%20-0.6v_z%20-0.2%5B2%20%2A%20%20%285-x%29%5D%5B%20-v_x%5D)
From the given equation of velocity field



So
substituting the given values of x and t
D. Soil is composed of weathered parent material where as crushed rock is not.
The kinetic energy of the mass at the instant it passes back through its equilibrium position is about 1.20 J

<h3>Further explanation</h3>
Let's recall Elastic Potential Energy formula as follows:

where:
<em>Ep = elastic potential energy ( J )</em>
<em>k = spring constant ( N/m )</em>
<em>x = spring extension ( compression ) ( m )</em>
Let us now tackle the problem!

<u>Given:</u>
mass of object = m = 1.25 kg
initial extension = x = 0.0275 m
final extension = x' = 0.0735 - 0.0275 = 0.0460 m
<u>Asked:</u>
kinetic energy = Ek = ?
<u>Solution:</u>
<em>Firstly , we will calculate the spring constant by using </em><em>Hooke's Law</em><em> as follows:</em>






<em>Next , we will use </em><em>Conservation of Energy</em><em> formula to solve this problem:</em>







<h3>Learn more</h3>

<h3>Answer details</h3>
Grade: High School
Subject: Physics
Chapter: Elasticity
Answer:
Explanation:
A machine is which no part of the work done on the machine is wasted, is called an ideal or perfect machine