Explanation:
32
2H
2
+O
2
→2H
2
O
Molecular mass of H
2
=2 g/mol
Molecular mass of O
2
=32 g/mol
From the balanced chemical equation,
2×2=4 g of hydrogen requires 32 g of Oxygen to react completely
Answer:
(a) 7.11x10⁻⁴ M/s
(b) 2.56 mol.L⁻¹.h⁻¹
Explanation:
(a) The reaction is:
O₃(g) + NO(g) → O₂(g) + NO₂(g) (1)
The reaction rate of equation (1) is given by:
(2)
<u>We have:</u>
k: is the rate constant of reaction = 3.91x10⁶ M⁻¹.s⁻¹
[O₃]₀ = 2.35x10⁻⁶ M
[NO]₀ = 7.74x10⁻⁵ M
Hence, to find the inital reacion rate we will use equation (2):
Therefore, the inital reaction rate is 7.11x10⁻⁴ M/s
(b) The number of moles of NO₂(g) produced per hour per liter of air is:
t = 1 h
V = 1 L
![\frac{\Delta[NO_{2}]}{\Delta t} = rate](https://tex.z-dn.net/?f=%5Cfrac%7B%5CDelta%5BNO_%7B2%7D%5D%7D%7B%5CDelta%20t%7D%20%3D%20rate)
![\frac{\Delta[NO_{2}]}{\Delta t} = 7.11 \cdot 10^{-4} M/s*\frac{3600 s}{1 h} = 2.56 mol.L^{-1}.h{-1}](https://tex.z-dn.net/?f=%5Cfrac%7B%5CDelta%5BNO_%7B2%7D%5D%7D%7B%5CDelta%20t%7D%20%3D%207.11%20%5Ccdot%2010%5E%7B-4%7D%20M%2Fs%2A%5Cfrac%7B3600%20s%7D%7B1%20h%7D%20%3D%202.56%20mol.L%5E%7B-1%7D.h%7B-1%7D)
Hence, the number of moles of NO₂(g) produced per hour per liter of air is 2.56 mol.L⁻¹.h⁻¹
I hope it helps you!
Answer:
15.2 g H2
Explanation:
2H2O -> 2H2 + O2
9.06 x 10^24 molecules x (1 mol/6.022 x 10^23 molecules) x (2 mol H2/2 mol H2O) x (1.008 g/1 mol) = 15.2 g H2
The question is incomplete, complete question is :
In the Haber reaction, patented by German chemist Fritz Haber in 1908, dinitrogen gas combines with dihydrogen gas to produce gaseous ammonia. This reaction is now the first step taken to make most of the world's fertilizer. Suppose a chemical engineer studying a new catalyst for the Haber reaction finds that 348 liters per second of dinitrogen are consumed when the reaction is run at 205°C and 0.72 atm. Calculate the rate at which ammonia is being produced.
Answer:
The rate of production of ammonia is 217.08 grams per second.
Explanation:

Volume of dinitrogen used in a second = 348 L
Temperature of the gas = T = 205°C = 205+273 K = 478 K
Pressure of the gas = P = 0.72 atm
Moles of dinitrogen = n

According to reaction, 1 mole of dinitriogen gives 2 mole of ammonia.Then 6.385 moles of dinitrogen will give:

Mass of 12.769 moles of ammonia;
12.769 mol 17 g/mol = 217.08 g
217.08 grams of ammonia is produced per second.So, the rate of production of ammonia is 217.08 grams per second.
Answer: The balanced equation is
.
Explanation:
The given reaction equation is as follows.

Number of atoms present on reactant side are as follows.
- Li = 1
- H = 1
= 1
Number of atoms present on product side are as follows.
- Li = 1
- H = 2
= 1
To balance this equation, multiply Li by 2 and
by 2 on reactant side. Also, multiply
by 2 on product side.
Hence, the equation can be rewritten as follows.

Now, number of atoms present on reactant side are as follows.
- Li = 2
- H = 2
= 2
Number of atoms present on product side are as follows.
- Li = 2
- H = 2
= 2
As there are same number of atoms on both reactant and product side. Hence, the equation is now balanced.
Thus, we can conclude that the balanced equation is
.