Answer:
These three factors are required for ionization potential or ionization energy.
Explanation:
Ionization potential refers to the amount of energy which is required for the removal of outermost electron of the atom. If the atom size is big so the outermost electron is far from the nucleus and low energy is required for its removal due to lower force of attraction between nucleus and outermost electron. If the nuclear charge is higher, so the electron is tightly held by the nucleus and require more energy for its removal. Nuclear charge means number of protons present in the nucleus.
Answer: They use other organisms for energy
Explanation:
Answer:
A) measuring mass of metal used in a reaction
Explanation:
Quantitive observations is data involving statistics and numerical values.
Answer:
The electrons are lost from the valence shell (outermost electron shell) of the atom.
Explanation:
This is able to be inferred not only because valence electrons being lost first is a trend but also because the atom in question has actually 3 valence electrons (13-2-8 = 3).
The law of conservation of mass or principle of mass conservation states that for any system closed to all transfers of matter and energy, the mass of the system must remain constant over time, as system's mass cannot change, so quantity cannot be added nor removed. Hence, the quantity of mass is conserved over time.
The law implies that mass can neither be created nor destroyed, although it may be rearranged in space, or the entities associated with it may be changed in form. For example, in chemical reactions, the mass of the chemical components before the reaction is equal to the mass of the components after the reaction. Thus, during any chemical reaction and low-energy thermodynamic processes in an isolated system, the total mass of the reactants, or starting materials, must be equal to the mass of the products.
According to the Law of Conservation, all atoms of the reactant(s) must equal the atoms of the product(s).
As a result, we need to balance chemical equations. We do this by adding in coefficients to the reactants and/or products. The compound(s) itself/themselves DOES NOT CHANGE.