Light does not travel at a constant speed in a vacuum, compared to in air, because the light is being absorbed by atoms and molecules in the air. But light does travel at a constant speed in a vacuum.
So I agree with A
All that talk about moving forward is irrelevant (I think)
Answer:
If the temperature increases the molecular movement as well, and if it increases the same it will happen with the molecular movement.
Pressure, volume and temperature are three factors that are closely related since they increase the temperature, the pressure usually decreases due to the dispersion of the molecules that can be generated, so the volume also increases.
If the temperature drops, the material becomes denser, its molecules do not collide with each other, their volume and pressure increases.
Explanation:
The pressure is related to the molecular density and the movement that these molecules have.
The movement is regulated by temperature, since if it increases, the friction and collision of the molecules also.
On the other hand, the higher the volume, the less pressure there will be on the molecules, since they are more dispersed among themselves.
(in the opposite case that the volume decreases, the pressure increases)
Answer:
The first high part is Q4, then the low part is Q7, the following high part is Q6, and the energy moving from the next two high points is Q5.
Explanation:
The first high part is Q4, then the low part is Q7, the following high part is Q6, and the energy moving from the next two high points is Q5 because of the diagram.
Answer:
A
Explanation:
The law of conservation of mass states that matter can never be created nor destroyed but can be converted from one form to another.
The law of conservation of energy posits that energy cannot be created nor destroyed but can be converted from one form to another.
These laws are the basic laws of existence. Although the laws have been adjusted, they still form the basic principle behind several scientific laws and are responsible for a whole lot of scientific advancements.
While the first law focuses on matter and the content of matter in a body, the second law basically focuses on energy. The second law serves to support the inter convertibility behind the several forms or types of energy.
For example, to do many useful work at home, it is found that energy is converted from its electric form to say heat in an electric iron to press our clothes.
Also, the first law is a fundamental principle useful in the balancing of our chemical equations.
The empirical formula is the same as the molecular formula : C₁₀H₅O₂
<h3>Further explanation</h3>
Given
Molecular formula : C₁₀H₅O₂
Required
The empirical formula
Solution
The empirical formula (EF) is the smallest comparison of atoms of compound forming elements.
The molecular formula (MF) is a formula that shows the number of atomic elements that make up a compound.
(empirical formula) n = molecular formula
<em>(EF)n=MF
</em>
(EF)n = C₁₀H₅O₂
If we divide by the number of moles of Oxygen (the smallest) which is 2 then the moles of Hydrogen will be a decimal number (not whole), which is 2.5, then the empirical formula is the same as the molecular formula