1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dsp73
3 years ago
9

Recall the steps of the engineering design process. Compare and contrast the

Engineering
1 answer:
Marta_Voda [28]3 years ago
3 0

Answer:

hi

Explanation:

hiiiiiiiiiiiiiiiiiiiiiiiii

You might be interested in
An induced-draft cooling tower cools 90,000 gallons per minute of water from 84 to 68oF. Air at 14.61 psia, 70oF dry bulb and 60
belka [17]

Answer:

a. V = 109.64 × 10⁵ ft/min

b. Mw = 654519.54 kg/hr

Explanation:

Given Parameters

mass flow rate of water, Mw = 90000g/min = 6607.33 kg/s

inlet temperature of water, T1 = 84 F = 28.89 C

outlet temperature of water, T2 = 68 F = 20 C

specific heat capacity of water, c = 4.18kJ/kgK

rate of heat remover from water, Qw is given by

Qw = 6607.33[28.89 - 20] * 4.18

Qw = 245529.545kw

For air, inlet condition

DBT = 70 F              hi = 43.43 kJ/kg

WBT = 60 F             wi = 0.00874 kJ/kg

                                u1 = 0.8445 m/kg

oulet condition,

DBT = 70 F        RH = 100.1

h1 = 83.504kJ/kg

Wo = 0.222kJ/kg

check the attached file for complete solution

3 0
3 years ago
¿Qué áreas del conocimiento me pueden<br> aportar a la ejecución del proyecto?
allsm [11]

Answer:

la escuela,en casa y listo...............

8 0
3 years ago
A stationary gas-turbine power plant operates on a simple ideal Brayton cycle with air as the working fluid. The air enters the
ololo11 [35]

Answer:

A) W' = 15680 KW

B) W' = 17113.87 KW

Explanation:

We are given;

Temperature at state 1; T1 = 290 K

Temperature at state 3; T3 = 1100 K

Rate of heat transfer; Q_in = 35000 kJ/s = 35000 Kw

Pressure of air into compressor; P_c = 95 kPa

Pressure of air into turbine; P_t = 760 kPa

A) The power assuming constant specific heats at room temperature is gotten from;

W' = [1 - ((T4 - T1)/(T3 - T2))] × Q_in

Now, we don't have T4 and T2 but they can be gotten from;

T4 = [T3 × (r_p)^((1 - k)/k)]

T2 = [T1 × (r_p)^((k - 1)/k)]

r_p = P_t/P_c

r_p = 760/95

r_p = 8

Also,k which is specific heat capacity of air has a constant value of 1.4

Thus;

Plugging in the relevant values, we have;

T4 = [(1100 × (8^((1 - 1.4)/1.4)]

T4 = 607.25 K

T2 = [290 × (8^((1.4 - 1)/1.4)]

T2 = 525.32 K

Thus;

W' = [1 - ((607.25 - 290)/(1100 - 525.32))] × 35000

W' = 0.448 × 35000

W' = 15680 KW

B) The power accounting for the variation of specific heats with temperature is given by;

W' = [1 - ((h4 - h1)/(h3 - h2))] × Q_in

From the table attached, we have the following;

At temperature of 607.25 K and by interpolation; h4 = 614.64 KJ/K

At T3 = 1100 K, h3 = 1161.07 KJ/K

At T1 = 290 K, h1 = 290.16 KJ/K

At T2 = 525.32 K, and by interpolation, h2 = 526.12 KJ/K

Thus;

W' = [1 - ((614.64 - 290.16)/(1161.07 - 526.12))] × 35000

W' = 17113.87 KW

4 0
2 years ago
What is the composition, in atom percent, of an alloy that consists of 4.5 wt% Pb and 95.5 wt% Sn?
jeka57 [31]

Answer: Option A is correct -- 2.6 at% Pb and 97.4 at% Sn.

Explanation:

Option A is the only correct option -- 2.6 at% Pb and 97.4 at% Sn. While option B, which is 7.6 at% Pb and 92.4 at% Sn. and option C, which is 97.4 at% Pb and 2.6 at% Sn. and option D, which is 92.4 at% Pb and 7.6 at% Sn. are wrong.

6 0
3 years ago
A cylindrical drill with radius 4 is used to bore a hole through the center of a sphere of radius 5. Find the volume of the ring
ANTONII [103]

Answer:

The volume of the ring shaped solid that remains is 21 unit^3.

Explanation:

The total volume of the sphere is given as:

Volume of Sphere = (4/3)πr^3

where, r = radius of sphere

Volume of Sphere = (4/3)(π)(5)^3

Volume of Sphere = 523.6 unit^3

Now, we find the volume of sphere removed by the drill:

Volume removed = (Cross-sectional Area of drill)(Diameter of Sphere)

Volume removed = (πr²)(D)

where, r = radius of drill = 4

D = diameter of sphere = 2*5 = 10

Therefore,

Volume removed = (π)(4)²(10)

Volume removed = 502.6 unit^3

Therefore, the volume of ring shaped solid that remains will be the difference between the total volume of sphere, and the volume removed.

Volume of Ring = Volume of Sphere - Volume removed

Volume of Ring = 523.6 - 502.6

<u>Volume of Ring = 21 unit^3</u>

5 0
3 years ago
Other questions:
  • A cable in a motor hoist must lift a 700-lb engine. The steel cable is 0.375in. in diameter. What is the stress in the cable?
    12·1 answer
  • True or false? Engineering degree programs and engineering technology degree programs have a different requirements
    9·1 answer
  • What is ONE DIFFERENCE between civil structural engineering
    13·1 answer
  • What does STP and NTP stands for in temperature measurement?
    15·1 answer
  • Air at 27°C, 1 atm flows parallel to a flat plate, which is electronically heated. The plate is 0.5 m long in the direction of f
    8·1 answer
  • Water is contained in a rigid vessel of 5 m3 at a quality of 0.8 and a pressure of 1 MPa. If the pressure is reduced to 270.3 kP
    9·1 answer
  • Which system provides an easier way for people to communicate with a computer than a graphical user interface (GUI)?
    15·1 answer
  • Using the tables for water, determine the specified property data at the indicated states. In each case, locate the state on ske
    10·1 answer
  • For many people in 3D modeling copyrights and licensing allow them to earn a living.
    12·1 answer
  • As you push a toggle bolt into a wall, the
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!