Answer:
a) v = 2,9992 10⁸ m / s
, b) Eo = 375 V / m
, B = 1.25 10⁻⁶ T,
c) λ = 3,157 10⁻⁷ m, f = 9.50 10¹⁴ Hz
, T = 1.05 10⁻¹⁵ s
, UV
Explanation:
In this problem they give us the equation of the traveling wave
E = 375 cos [1.99 10⁷ x + 5.97 10¹⁵ t]
a) what the wave velocity
all waves must meet
v = λ f
In this case, because of an electromagnetic wave, the speed must be the speed of light.
k = 2π / λ
λ = 2π / k
λ = 2π / 1.99 10⁷
λ = 3,157 10⁻⁷ m
w = 2π f
f = w / 2 π
f = 5.97 10¹⁵ / 2π
f = 9.50 10¹⁴ Hz
the wave speed is
v = 3,157 10⁻⁷ 9.50 10¹⁴
v = 2,9992 10⁸ m / s
b) The electric field is
Eo = 375 V / m
to find the magnetic field we use
E / B = c
B = E / c
B = 375 / 2,9992 10⁸
B = 1.25 10⁻⁶ T
c) The period is
T = 1 / f
T = 1 / 9.50 10¹⁴
T = 1.05 10⁻¹⁵ s
the wavelength value is
λ = 3,157 10-7 m (109 nm / 1m) = 315.7 nm
this wavelength corresponds to the ultraviolet
Answer:
30.63 m
Explanation:
From the question given above, the following data were obtained:
Total time (T) spent by the ball in air = 5 s
Maximum height (h) =.?
Next, we shall determine the time taken to reach the maximum height. This can be obtained as follow:
Total time (T) spent by the ball in air = 5 s
Time (t) taken to reach the maximum height =.?
T = 2t
5 = 2t
Divide both side by 2
t = 5/2
t = 2.5 s
Thus, the time (t) taken to reach the maximum height is 2.5 s
Finally, we shall determine the maximum height reached by the ball as follow:
Time (t) taken to reach the maximum height = 2.5 s
Acceleration due to gravity (g) = 9.8 m/s²
Maximum height (h) =.?
h = ½gt²
h = ½ × 9.8 × 2.5²
h = 4.9 × 6.25
h = 30.625 ≈ 30.63 m
Therefore, the maximum height reached by the cannon ball is 30.63 m
Answer:
Specific gravity is 0.56
Explanation:
We know that
mass of water displaced by the wood is, m1( apparent mass when wood in air and lead is submerged in water) - m2(the apparent mass when wood and lead both are submerged in water)
= 0.0765 - 0.0452 = 0.0313 Kg
So the specific gravity of the wood is, = mass of wood / mass of water displaced by the wood
= 0.0175/0.0313
=0.56