A boy throws a ball and accidentally breaks a window. The momentum of the ball and all the pieces of glass taken together after the collision is the same as <span>the momentum of the ball before the collision. I think you forgot to give the choices along with the question. I hope that the answer has come to your great help.</span>
P = U × I
I = P / U = 1600W / 120V = 13.4A
P = 240V × 13.4A = 3216W
If your hair blower isnt rated for 220- 230V(this is the voltage in EU) you are most likely going to burn it.
v = 
and
a = 
We have acceleration and velocity so:
3 = 
88.3 = 
In the acceleration equation we can isolate for v and then plug it back into the other equation to solve...
So...


Divide by three and
t = 29.4 s
Answer:
The number is 
Explanation:
From the question we are told that
The wavelength is 
The length of the glass plates is 
The distance between the plates (radius of wire ) = 
Generally the condition for constructive interference in a film is mathematically represented as
![2 * t = [m + \frac{1}{2} ]\lambda](https://tex.z-dn.net/?f=2%20%2A%20%20t%20%20%3D%20%5Bm%20%2B%20%20%5Cfrac%7B1%7D%7B2%7D%20%20%5D%5Clambda)
Where t is the thickness of the separation between the glass i.e
t = 0 at the edge where the glasses are touching each other and
t = 2d at the edge where the glasses are separated by the wire
m is the order of the fringe it starts from 0, 1 , 2 ...
So
![2 * 2 * d = [m + \frac{1}{2} ] 520 *10^{-9}](https://tex.z-dn.net/?f=2%20%2A%20%202%20%2A%20d%20%20%20%3D%20%5Bm%20%2B%20%20%5Cfrac%7B1%7D%7B2%7D%20%20%5D%20520%20%2A10%5E%7B-9%7D)
=> ![2 * 2 * (2.8 *10^{-5}) = [m + \frac{1}{2} ] 520 *10^{-9}](https://tex.z-dn.net/?f=2%20%2A%20%202%20%2A%20%20%20%282.8%20%2A10%5E%7B-5%7D%29%20%3D%20%5Bm%20%2B%20%20%5Cfrac%7B1%7D%7B2%7D%20%20%5D%20520%20%2A10%5E%7B-9%7D)
=>

given that we start counting m from zero
it means that the number of bright fringes that would appear is

=> 
=> 
Explanation:
Electrical resistance can be defined as the opposition to the flow of current in an electric circuit or wire. The resistance converts electrical energy into thermal energy, this serves as friction in mechanical systems. And this electrical energy converted to thermal is dissipated.
By ohm's law we have
Resistance R = Voltage V/ Current I